Goto

Collaborating Authors

 Zhang, Wensheng


Is Your Video Language Model a Reliable Judge?

arXiv.org Artificial Intelligence

As video language models (VLMs) gain more applications in various scenarios, the need for robust and scalable evaluation of their performance becomes increasingly critical. The traditional human expert-based evaluation of VLMs has limitations in consistency and scalability, which sparked interest in automatic methods such as employing VLMs to evaluate VLMs. However, the reliability of VLMs as judges remains underexplored. Existing methods often rely on a single VLM as the evaluator. However, this approach can be unreliable or biased because such a model may lack the ability to fully understand the content and may have inherent biases, ultimately compromising evaluation reliability. A remedy is to apply the principle of collective thoughts, aggregating evaluations from multiple VLMs to enhance reliability. This study investigates the efficacy of such approaches, particularly when the pool of judges includes both reliable and unreliable models. Our findings reveal that incorporating collective judgments from such a mixed pool does not necessarily improve the accuracy of the final evaluation. The inclusion of less reliable judges can introduce noise, undermining the overall reliability of the outcomes. To explore the factors that impact evaluation reliability, we fine-tune an underperforming VLM judge, Video-LLaVA, and observe that improved understanding ability alone is insufficient to make VLM judges more reliable. These findings stress the limitations of collective thought approaches and highlight the need for more advanced methods that can account for the reliability of individual models. Our study promotes the development of more reliable evaluation methods for VLMs. Figure 1: By contrasting reviewing results from one VLM with multi-LLM Agent-Debate, we find that some VLMs are far from being able to provide reliable reviews. More and more video language models (VLMs) have been developed for video understanding.


On Fairness of Unified Multimodal Large Language Model for Image Generation

arXiv.org Artificial Intelligence

Unified multimodal large language models (U-MLLMs) have demonstrated impressive performance in visual understanding and generation in an end-to-end pipeline. Compared with generation-only models (e.g., Stable Diffusion), U-MLLMs may raise new questions about bias in their outputs, which can be affected by their unified capabilities. This gap is particularly concerning given the under-explored risk of propagating harmful stereotypes. In this paper, we benchmark the latest U-MLLMs and find that most exhibit significant demographic biases, such as gender and race bias. To better understand and mitigate this issue, we propose a locate-then-fix strategy, where we audit and show how the individual model component is affected by bias. Our analysis shows that bias originates primarily from the language model. More interestingly, we observe a "partial alignment" phenomenon in U-MLLMs, where understanding bias appears minimal, but generation bias remains substantial. Thus, we propose a novel balanced preference model to balance the demographic distribution with synthetic data. Experiments demonstrate that our approach reduces demographic bias while preserving semantic fidelity. We hope our findings underscore the need for more holistic interpretation and debiasing strategies of U-MLLMs in the future.


AdaptGCD: Multi-Expert Adapter Tuning for Generalized Category Discovery

arXiv.org Artificial Intelligence

Different from the traditional semi-supervised learning paradigm that is constrained by the close-world assumption, Generalized Category Discovery (GCD) presumes that the unlabeled dataset contains new categories not appearing in the labeled set, and aims to not only classify old categories but also discover new categories in the unlabeled data. Existing studies on GCD typically devote to transferring the general knowledge from the self-supervised pretrained model to the target GCD task via some fine-tuning strategies, such as partial tuning and prompt learning. Nevertheless, these fine-tuning methods fail to make a sound balance between the generalization capacity of pretrained backbone and the adaptability to the GCD task. To fill this gap, in this paper, we propose a novel adapter-tuning-based method named AdaptGCD, which is the first work to introduce the adapter tuning into the GCD task and provides some key insights expected to enlighten future research. Furthermore, considering the discrepancy of supervision information between the old and new classes, a multi-expert adapter structure equipped with a route assignment constraint is elaborately devised, such that the data from old and new classes are separated into different expert groups. Extensive experiments are conducted on 7 widely-used datasets. The remarkable improvements in performance highlight the effectiveness of our proposals.


Gradient Projection For Continual Parameter-Efficient Tuning

arXiv.org Artificial Intelligence

Parameter-efficient tunings (PETs) have demonstrated impressive performance and promising perspectives in training large models, while they are still confronted with a common problem: the trade-off between learning new content and protecting old knowledge, leading to zero-shot generalization collapse, and cross-modal hallucination. In this paper, we reformulate Adapter, LoRA, Prefix-tuning, and Prompt-tuning from the perspective of gradient projection, and firstly propose a unified framework called Parameter Efficient Gradient Projection (PEGP). We introduce orthogonal gradient projection into different PET paradigms and theoretically demonstrate that the orthogonal condition for the gradient can effectively resist forgetting even for large-scale models. It therefore modifies the gradient towards the direction that has less impact on the old feature space, with less extra memory space and training time. We extensively evaluate our method with different backbones, including ViT and CLIP, on diverse datasets, and experiments comprehensively demonstrate its efficiency in reducing forgetting in class, online class, domain, task, and multi-modality continual settings. The project page is available at https://dmcv-ecnu-pegp.github.io/.


LoRAP: Transformer Sub-Layers Deserve Differentiated Structured Compression for Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) show excellent performance in difficult tasks, but they often require massive memories and computational resources. How to reduce the parameter scale of LLMs has become research hotspots. In this study, we make an important observation that the multi-head self-attention (MHA) sub-layer of Transformer exhibits noticeable low-rank structure, while the feed-forward network (FFN) sub-layer does not. With this regard, we design a mixed compression model, which organically combines Low-Rank matrix approximation And structured Pruning (LoRAP). For the MHA sub-layer, we propose an input activation weighted singular value decomposition method to strengthen the low-rank characteristic. Furthermore, we discover that the weight matrices in MHA sub-layer have different low-rank degrees. Thus, a novel parameter allocation scheme according to the discrepancy of low-rank degrees is devised. For the FFN sub-layer, we propose a gradient-free structured channel pruning method. During the pruning, we get an interesting finding that the least important 1% of parameter actually play a vital role in model performance. Extensive evaluations on zero-shot perplexity and zero-shot task classification indicate that our proposal is superior to previous structured compression rivals under multiple compression ratios.


Hierarchical Skip Decoding for Efficient Autoregressive Text Generation

arXiv.org Artificial Intelligence

Autoregressive decoding strategy is a commonly used method for text generation tasks with pre-trained language models, while early-exiting is an effective approach to speedup the inference stage. In this work, we propose a novel decoding strategy named Hierarchical Skip Decoding (HSD) for efficient autoregressive text generation. Different from existing methods that require additional trainable components, HSD is a plug-and-play method applicable to autoregressive text generation models, it adaptively skips decoding layers in a hierarchical manner based on the current sequence length, thereby reducing computational workload and allocating computation resources. Comprehensive experiments on five text generation datasets with pre-trained language models demonstrate HSD's advantages in balancing efficiency and text quality. With almost half of the layers skipped, HSD can sustain 90% of the text quality compared to vanilla autoregressive decoding, outperforming the competitive approaches.


Integrating Homomorphic Encryption and Trusted Execution Technology for Autonomous and Confidential Model Refining in Cloud

arXiv.org Artificial Intelligence

With the popularity of cloud computing and machine learning, it has been a trend to outsource machine learning processes (including model training and model-based inference) to cloud. By the outsourcing, other than utilizing the extensive and scalable resource offered by the cloud service provider, it will also be attractive to users if the cloud servers can manage the machine learning processes autonomously on behalf of the users. Such a feature will be especially salient when the machine learning is expected to be a long-term continuous process and the users are not always available to participate. Due to security and privacy concerns, it is also desired that the autonomous learning preserves the confidentiality of users' data and models involved. Hence, in this paper, we aim to design a scheme that enables autonomous and confidential model refining in cloud. Homomorphic encryption and trusted execution environment technology can protect confidentiality for autonomous computation, but each of them has their limitations respectively and they are complementary to each other. Therefore, we further propose to integrate these two techniques in the design of the model refining scheme. Through implementation and experiments, we evaluate the feasibility of our proposed scheme. The results indicate that, with our proposed scheme the cloud server can autonomously refine an encrypted model with newly provided encrypted training data to continuously improve its accuracy. Though the efficiency is still significantly lower than the baseline scheme that refines plaintext-model with plaintext-data, we expect that it can be improved by fully utilizing the higher level of parallelism and the computational power of GPU at the cloud server.


Parameter-Efficient Fine-Tuning with Layer Pruning on Free-Text Sequence-to-Sequence Modeling

arXiv.org Artificial Intelligence

The increasing size of language models raises great research interests in parameter-efficient fine-tuning such as LoRA that freezes the pre-trained model, and injects small-scale trainable parameters for multiple downstream tasks (e.g., summarization, question answering and translation). To further enhance the efficiency of fine-tuning, we propose a framework that integrates LoRA and structured layer pruning. The integrated framework is validated on two created deidentified medical report summarization datasets based on MIMIC-IV-Note and two public medical dialogue datasets. By tuning 0.6% parameters of the original model and pruning over 30% Transformer-layers, our framework can reduce 50% of GPU memory usage and speed up 100% of the training phase, while preserving over 92% generation qualities on free-text sequence-to-sequence tasks.


Deep Multi-View Semi-Supervised Clustering with Sample Pairwise Constraints

arXiv.org Artificial Intelligence

Multi-view clustering has attracted much attention thanks to the capacity of multi-source information integration. Although numerous advanced methods have been proposed in past decades, most of them generally overlook the significance of weakly-supervised information and fail to preserve the feature properties of multiple views, thus resulting in unsatisfactory clustering performance. To address these issues, in this paper, we propose a novel Deep Multi-view Semi-supervised Clustering (DMSC) method, which jointly optimizes three kinds of losses during networks finetuning, including multi-view clustering loss, semi-supervised pairwise constraint loss and multiple autoencoders reconstruction loss. Specifically, a KL divergence based multi-view clustering loss is imposed on the common representation of multi-view data to perform heterogeneous feature optimization, multi-view weighting and clustering prediction simultaneously. Then, we innovatively propose to integrate pairwise constraints into the process of multi-view clustering by enforcing the learned multi-view representation of must-link samples (cannot-link samples) to be similar (dissimilar), such that the formed clustering architecture can be more credible. Moreover, unlike existing rivals that only preserve the encoders for each heterogeneous branch during networks finetuning, we further propose to tune the intact autoencoders frame that contains both encoders and decoders. In this way, the issue of serious corruption of view-specific and view-shared feature space could be alleviated, making the whole training procedure more stable. Through comprehensive experiments on eight popular image datasets, we demonstrate that our proposed approach performs better than the state-of-the-art multi-view and single-view competitors.


Cross-Domain Label Propagation for Domain Adaptation with Discriminative Graph Self-Learning

arXiv.org Artificial Intelligence

Domain adaptation manages to transfer the knowledge of well-labeled source data to unlabeled target data. Many recent efforts focus on improving the prediction accuracy of target pseudo-labels to reduce conditional distribution shift. In this paper, we propose a novel domain adaptation method, which infers target pseudo-labels through cross-domain label propagation, such that the underlying manifold structure of two domain data can be explored. Unlike existing cross-domain label propagation methods that separate domain-invariant feature learning, affinity matrix constructing and target labels inferring into three independent stages, we propose to integrate them into a unified optimization framework. In such way, these three parts can boost each other from an iterative optimization perspective and thus more effective knowledge transfer can be achieved. Furthermore, to construct a high-quality affinity matrix, we propose a discriminative graph self-learning strategy, which can not only adaptively capture the inherent similarity of the data from two domains but also effectively exploit the discriminative information contained in well-labeled source data and pseudo-labeled target data. An efficient iterative optimization algorithm is designed to solve the objective function of our proposal. Notably, the proposed method can be extended to semi-supervised domain adaptation in a simple but effective way and the corresponding optimization problem can be solved with the identical algorithm. Extensive experiments on six standard datasets verify the significant superiority of our proposal in both unsupervised and semi-supervised domain adaptation settings.