Zhang, Shusen
Baichuan-Omni-1.5 Technical Report
Li, Yadong, Liu, Jun, Zhang, Tao, Zhang, Tao, Chen, Song, Li, Tianpeng, Li, Zehuan, Liu, Lijun, Ming, Lingfeng, Dong, Guosheng, Pan, Da, Li, Chong, Fang, Yuanbo, Kuang, Dongdong, Wang, Mingrui, Zhu, Chenglin, Zhang, Youwei, Guo, Hongyu, Zhang, Fengyu, Wang, Yuran, Ding, Bowen, Song, Wei, Li, Xu, Huo, Yuqi, Liang, Zheng, Zhang, Shusen, Wu, Xin, Zhao, Shuai, Xiong, Linchu, Wu, Yozhen, Ye, Jiahui, Lu, Wenhao, Li, Bowen, Zhang, Yan, Zhou, Yaqi, Chen, Xin, Su, Lei, Zhang, Hongda, Chen, Fuzhong, Dong, Xuezhen, Nie, Na, Wu, Zhiying, Xiao, Bin, Li, Ting, Dang, Shunya, Zhang, Ping, Sun, Yijia, Wu, Jincheng, Yang, Jinjie, Lin, Xionghai, Ma, Zhi, Wu, Kegeng, li, Jia, Yang, Aiyuan, Liu, Hui, Zhang, Jianqiang, Chen, Xiaoxi, Ai, Guangwei, Zhang, Wentao, Chen, Yicong, Huang, Xiaoqin, Li, Kun, Luo, Wenjing, Duan, Yifei, Zhu, Lingling, Xiao, Ran, Su, Zhe, Pu, Jiani, Wang, Dian, Jia, Xu, Zhang, Tianyu, Ai, Mengyu, Wang, Mang, Qiao, Yujing, Zhang, Lei, Shen, Yanjun, Yang, Fan, Zhen, Miao, Zhou, Yijie, Chen, Mingyang, Li, Fei, Zhu, Chenzheng, Lu, Keer, Zhao, Yaqi, Liang, Hao, Li, Youquan, Qin, Yanzhao, Sun, Linzhuang, Xu, Jianhua, Sun, Haoze, Lin, Mingan, Zhou, Zenan, Chen, Weipeng
We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks.
Med-R$^2$: Crafting Trustworthy LLM Physicians through Retrieval and Reasoning of Evidence-Based Medicine
Lu, Keer, Liang, Zheng, Pan, Da, Zhang, Shusen, Wu, Xin, Chen, Weipeng, Zhou, Zenan, Dong, Guosheng, Cui, Bin, Zhang, Wentao
In recent years, Large Language Models (LLMs) have exhibited remarkable capabilities in clinical scenarios. However, despite their potential, existing works face challenges when applying LLMs to medical settings. Strategies relying on training with medical datasets are highly cost-intensive and may suffer from outdated training data. Leveraging external knowledge bases is a suitable alternative, yet it faces obstacles such as limited retrieval precision and poor effectiveness in answer extraction. These issues collectively prevent LLMs from demonstrating the expected level of proficiency in mastering medical expertise. To address these challenges, we introduce Med-R^2, a novel LLM physician framework that adheres to the Evidence-Based Medicine (EBM) process, efficiently integrating retrieval mechanisms as well as the selection and reasoning processes of evidence, thereby enhancing the problem-solving capabilities of LLMs in healthcare scenarios and fostering a trustworthy LLM physician. Our comprehensive experiments indicate that Med-R^2 achieves a 14.87\% improvement over vanilla RAG methods and even a 3.59\% enhancement compared to fine-tuning strategies, without incurring additional training costs.
Baichuan-Omni Technical Report
Li, Yadong, Sun, Haoze, Lin, Mingan, Li, Tianpeng, Dong, Guosheng, Zhang, Tao, Ding, Bowen, Song, Wei, Cheng, Zhenglin, Huo, Yuqi, Chen, Song, Li, Xu, Pan, Da, Zhang, Shusen, Wu, Xin, Liang, Zheng, Liu, Jun, Zhang, Tao, Lu, Keer, Zhao, Yaqi, Shen, Yanjun, Yang, Fan, Yu, Kaicheng, Lin, Tao, Xu, Jianhua, Zhou, Zenan, Chen, Weipeng
The salient multimodal capabilities and interactive experience of GPT-4o highlight its critical role in practical applications, yet it lacks a high-performing open-source counterpart. In this paper, we introduce Baichuan-omni, the first open-source 7B Multimodal Large Language Model (MLLM) adept at concurrently processing and analyzing modalities of image, video, audio, and text, while delivering an advanced multimodal interactive experience and strong performance. We propose an effective multimodal training schema starting with 7B model and proceeding through two stages of multimodal alignment and multitask fine-tuning across audio, image, video, and text modal. This approach equips the language model with the ability to handle visual and audio data effectively. Demonstrating strong performance across various omni-modal and multimodal benchmarks, we aim for this contribution to serve as a competitive baseline for the open-source community in advancing multimodal understanding and real-time interaction.
VersaTune: An Efficient Data Composition Framework for Training Multi-Capability LLMs
Lu, Keer, Zhao, Keshi, Liang, Zheng, Pan, Da, Zhang, Shusen, Wu, Xin, Chen, Weipeng, Zhou, Zenan, Dong, Guosheng, Cui, Bin, Zhang, Wentao
Large-scale pretrained models, particularly Large Language Models (LLMs), have exhibited remarkable capabilities in handling multiple tasks across domains due to their emergent properties. These capabilities are further augmented during the Supervised Fine-Tuning (SFT) phase. Despite their potential, existing work mainly focuses on domain-specific enhancements during fine-tuning, the challenge of which lies in catastrophic forgetting of knowledge across other domains. In this study, we introduce VersaTune, a novel data composition framework designed for enhancing LLMs' overall multi-ability performances during training. We categorize knowledge into distinct domains including law, medicine, finance, science, code, etc. We begin with detecting the distribution of domain-specific knowledge within the base model, followed by the training data composition that aligns with the model's existing knowledge distribution. During the training process, domain weights are dynamically adjusted based on their learnable potential and forgetting degree. Experimental results demonstrate that VersaTune achieves significant improvements in multi-domain performance, with an 35.21% enhancement in comprehensive multi-domain tasks. Additionally, in scenarios where specific domain optimization is required, VersaTune reduces the degradation of performance in other domains by 38.77%, without compromising the target domain's training efficacy.
Event-driven Real-time Retrieval in Web Search
Yang, Nan, Zhang, Shusen, Zhang, Yannan, Bai, Xiaoling, Deng, Hualong, Zhou, Tianhua, Ma, Jin
Information retrieval in real-time search presents unique challenges distinct from those encountered in classical web search. These challenges are particularly pronounced due to the rapid change of user search intent, which is influenced by the occurrence and evolution of breaking news events, such as earthquakes, elections, and wars. Previous dense retrieval methods, which primarily focused on static semantic representation, lack the capacity to capture immediate search intent, leading to inferior performance in retrieving the most recent event-related documents in time-sensitive scenarios. To address this issue, this paper expands the query with event information that represents real-time search intent. The Event information is then integrated with the query through a cross-attention mechanism, resulting in a time-context query representation. We further enhance the model's capacity for event representation through multi-task training. Since publicly available datasets such as MS-MARCO do not contain any event information on the query side and have few time-sensitive queries, we design an automatic data collection and annotation pipeline to address this issue, which includes ModelZoo-based Coarse Annotation and LLM-driven Fine Annotation processes. In addition, we share the training tricks such as two-stage training and hard negative sampling. Finally, we conduct a set of offline experiments on a million-scale production dataset to evaluate our approach and deploy an A/B testing in a real online system to verify the performance. Extensive experimental results demonstrate that our proposed approach significantly outperforms existing state-of-the-art baseline methods.