Goto

Collaborating Authors

 Zhang, Shao


PMAT: Optimizing Action Generation Order in Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) faces challenges in coordinating agents due to complex interdependencies within multi-agent systems. Most MARL algorithms use the simultaneous decision-making paradigm but ignore the action-level dependencies among agents, which reduces coordination efficiency. In contrast, the sequential decision-making paradigm provides finer-grained supervision for agent decision order, presenting the potential for handling dependencies via better decision order management. However, determining the optimal decision order remains a challenge. In this paper, we introduce Action Generation with Plackett-Luce Sampling (AGPS), a novel mechanism for agent decision order optimization. We model the order determination task as a Plackett-Luce sampling process to address issues such as ranking instability and vanishing gradient during the network training process. AGPS realizes credit-based decision order determination by establishing a bridge between the significance of agents' local observations and their decision credits, thus facilitating order optimization and dependency management. Integrating AGPS with the Multi-Agent Transformer, we propose the Prioritized Multi-Agent Transformer (PMAT), a sequential decision-making MARL algorithm with decision order optimization. Experiments on benchmarks including StarCraft II Multi-Agent Challenge, Google Research Football, and Multi-Agent MuJoCo show that PMAT outperforms state-of-the-art algorithms, greatly enhancing coordination efficiency.


Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration

arXiv.org Artificial Intelligence

Agents built on large language models (LLMs) have excelled in turn-by-turn human-AI collaboration but struggle with simultaneous tasks requiring real-time interaction. Latency issues and the challenge of inferring variable human strategies hinder their ability to make autonomous decisions without explicit instructions. Through experiments with current independent System 1 and System 2 methods, we validate the necessity of using Dual Process Theory (DPT) in real-time tasks. We propose DPT-Agent, a novel language agent framework that integrates System 1 and System 2 for efficient real-time simultaneous human-AI collaboration. DPT-Agent's System 1 uses a Finite-state Machine (FSM) and code-as-policy for fast, intuitive, and controllable decision-making. DPT-Agent's System 2 integrates Theory of Mind (ToM) and asynchronous reflection to infer human intentions and perform reasoning-based autonomous decisions. We demonstrate the effectiveness of DPT-Agent through further experiments with rule-based agents and human collaborators, showing significant improvements over mainstream LLM-based frameworks. To the best of our knowledge, DPT-Agent is the first language agent framework that achieves successful real-time simultaneous human-AI collaboration autonomously. Code of DPT-Agent can be found in https://github.com/sjtu-marl/DPT-Agent.


Language Games as the Pathway to Artificial Superhuman Intelligence

arXiv.org Artificial Intelligence

The evolution of large language models (LLMs) toward artificial superhuman intelligence (ASI) hinges on data reproduction, a cyclical process in which models generate, curate and retrain on novel data to refine capabilities. Current methods, however, risk getting stuck in a data reproduction trap: optimizing outputs within fixed human-generated distributions in a closed loop leads to stagnation, as models merely recombine existing knowledge rather than explore new frontiers. In this paper, we propose language games as a pathway to expanded data reproduction, breaking this cycle through three mechanisms: (1) \textit{role fluidity}, which enhances data diversity and coverage by enabling multi-agent systems to dynamically shift roles across tasks; (2) \textit{reward variety}, embedding multiple feedback criteria that can drive complex intelligent behaviors; and (3) \textit{rule plasticity}, iteratively evolving interaction constraints to foster learnability, thereby injecting continual novelty. By scaling language games into global sociotechnical ecosystems, human-AI co-evolution generates unbounded data streams that drive open-ended exploration. This framework redefines data reproduction not as a closed loop but as an engine for superhuman intelligence.


Aligning Individual and Collective Objectives in Multi-Agent Cooperation

arXiv.org Artificial Intelligence

Among the research topics in multi-agent learning, mixed-motive cooperation is one of the most prominent challenges, primarily due to the mismatch between individual and collective goals. The cutting-edge research is focused on incorporating domain knowledge into rewards and introducing additional mechanisms to incentivize cooperation. However, these approaches often face shortcomings such as the effort on manual design and the absence of theoretical groundings. To close this gap, we model the mixed-motive game as a differentiable game for the ease of illuminating the learning dynamics towards cooperation. More detailed, we introduce a novel optimization method named \textbf{\textit{A}}ltruistic \textbf{\textit{G}}radient \textbf{\textit{A}}djustment (\textbf{\textit{AgA}}) that employs gradient adjustments to progressively align individual and collective objectives. Furthermore, we theoretically prove that AgA effectively attracts gradients to stable fixed points of the collective objective while considering individual interests, and we validate these claims with empirical evidence. We evaluate the effectiveness of our algorithm AgA through benchmark environments for testing mixed-motive collaboration with small-scale agents such as the two-player public good game and the sequential social dilemma games, Cleanup and Harvest, as well as our self-developed large-scale environment in the game StarCraft II.


AceMap: Knowledge Discovery through Academic Graph

arXiv.org Artificial Intelligence

The exponential growth of scientific literature requires effective management and extraction of valuable insights. While existing scientific search engines excel at delivering search results based on relational databases, they often neglect the analysis of collaborations between scientific entities and the evolution of ideas, as well as the in-depth analysis of content within scientific publications. The representation of heterogeneous graphs and the effective measurement, analysis, and mining of such graphs pose significant challenges. To address these challenges, we present AceMap, an academic system designed for knowledge discovery through academic graph. We present advanced database construction techniques to build the comprehensive AceMap database with large-scale academic entities that contain rich visual, textual, and numerical information. AceMap also employs innovative visualization, quantification, and analysis methods to explore associations and logical relationships among academic entities. AceMap introduces large-scale academic network visualization techniques centered on nebular graphs, providing a comprehensive view of academic networks from multiple perspectives. In addition, AceMap proposes a unified metric based on structural entropy to quantitatively measure the knowledge content of different academic entities. Moreover, AceMap provides advanced analysis capabilities, including tracing the evolution of academic ideas through citation relationships and concept co-occurrence, and generating concise summaries informed by this evolutionary process. In addition, AceMap uses machine reading methods to generate potential new ideas at the intersection of different fields. Exploring the integration of large language models and knowledge graphs is a promising direction for future research in idea evolution. Please visit \url{https://www.acemap.info} for further exploration.


Talk2Care: Facilitating Asynchronous Patient-Provider Communication with Large-Language-Model

arXiv.org Artificial Intelligence

Despite the plethora of telehealth applications to assist home-based older adults and healthcare providers, basic messaging and phone calls are still the most common communication methods, which suffer from limited availability, information loss, and process inefficiencies. One promising solution to facilitate patient-provider communication is to leverage large language models (LLMs) with their powerful natural conversation and summarization capability. However, there is a limited understanding of LLMs' role during the communication. We first conducted two interview studies with both older adults (N=10) and healthcare providers (N=9) to understand their needs and opportunities for LLMs in patient-provider asynchronous communication. Based on the insights, we built an LLM-powered communication system, Talk2Care, and designed interactive components for both groups: (1) For older adults, we leveraged the convenience and accessibility of voice assistants (VAs) and built an LLM-powered VA interface for effective information collection. (2) For health providers, we built an LLM-based dashboard to summarize and present important health information based on older adults' conversations with the VA. We further conducted two user studies with older adults and providers to evaluate the usability of the system. The results showed that Talk2Care could facilitate the communication process, enrich the health information collected from older adults, and considerably save providers' efforts and time. We envision our work as an initial exploration of LLMs' capability in the intersection of healthcare and interpersonal communication.


Controlling Large Language Model-based Agents for Large-Scale Decision-Making: An Actor-Critic Approach

arXiv.org Artificial Intelligence

The remarkable progress in Large Language Models (LLMs) opens up new avenues for addressing planning and decision-making problems in Multi-Agent Systems (MAS). However, as the number of agents increases, the issues of hallucination in LLMs and coordination in MAS have become increasingly prominent. Additionally, the efficient utilization of tokens emerges as a critical consideration when employing LLMs to facilitate the interactions among a substantial number of agents. In this paper, we develop a modular framework called LLaMAC to mitigate these challenges. LLaMAC implements a value distribution encoding similar to that found in the human brain, utilizing internal and external feedback mechanisms to facilitate collaboration and iterative reasoning among its modules. Through evaluations involving system resource allocation and robot grid transportation, we demonstrate the considerable advantages afforded by our proposed approach.


Tackling Cooperative Incompatibility for Zero-Shot Human-AI Coordination

arXiv.org Artificial Intelligence

Securing coordination between AI agent and teammates (human players or AI agents) in contexts involving unfamiliar humans continues to pose a significant challenge in Zero-Shot Coordination. The issue of cooperative incompatibility becomes particularly prominent when an AI agent is unsuccessful in synchronizing with certain previously unknown partners. Traditional algorithms have aimed to collaborate with partners by optimizing fixed objectives within a population, fostering diversity in strategies and behaviors. However, these techniques may lead to learning loss and an inability to cooperate with specific strategies within the population, a phenomenon named cooperative incompatibility in learning. In order to solve cooperative incompatibility in learning and effectively address the problem in the context of ZSC, we introduce the Cooperative Open-ended LEarning (COLE) framework, which formulates open-ended objectives in cooperative games with two players using perspectives of graph theory to evaluate and pinpoint the cooperative capacity of each strategy. We present two practical algorithms, specifically \algo and \algoR, which incorporate insights from game theory and graph theory. We also show that COLE could effectively overcome the cooperative incompatibility from theoretical and empirical analysis. Subsequently, we created an online Overcooked human-AI experiment platform, the COLE platform, which enables easy customization of questionnaires, model weights, and other aspects. Utilizing the COLE platform, we enlist 130 participants for human experiments. Our findings reveal a preference for our approach over state-of-the-art methods using a variety of subjective metrics. Moreover, objective experimental outcomes in the Overcooked game environment indicate that our method surpasses existing ones when coordinating with previously unencountered AI agents and the human proxy model.


FairytaleCQA: Integrating a Commonsense Knowledge Graph into Children's Storybook Narratives

arXiv.org Artificial Intelligence

AI models (including LLM) often rely on narrative question-answering (QA) datasets to provide customized QA functionalities to support downstream children education applications; however, existing datasets only include QA pairs that are grounded within the given storybook content, but children can learn more when teachers refer the storybook content to real-world knowledge (e.g., commonsense knowledge). We introduce the FairytaleCQA dataset, which is annotated by children education experts, to supplement 278 storybook narratives with educationally appropriate commonsense knowledge. The dataset has 5,868 QA pairs that not only originate from the storybook narrative but also contain the commonsense knowledge grounded by an external knowledge graph (i.e., ConceptNet). A follow-up experiment shows that a smaller model (T5-large) fine-tuned with FairytaleCQA reliably outperforms much larger prompt-engineered LLM (e.g., GPT-4) in this new QA-pair generation task (QAG). This result suggests that: 1) our dataset brings novel challenges to existing LLMs, and 2) human experts' data annotation are still critical as they have much nuanced knowledge that LLMs do not know in the children educational domain.


Human Still Wins over LLM: An Empirical Study of Active Learning on Domain-Specific Annotation Tasks

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated considerable advances, and several claims have been made about their exceeding human performance. However, in real-world tasks, domain knowledge is often required. Low-resource learning methods like Active Learning (AL) have been proposed to tackle the cost of domain expert annotation, raising this question: Can LLMs surpass compact models trained with expert annotations in domain-specific tasks? In this work, we conduct an empirical experiment on four datasets from three different domains comparing SOTA LLMs with small models trained on expert annotations with AL. We found that small models can outperform GPT-3.5 with a few hundreds of labeled data, and they achieve higher or similar performance with GPT-4 despite that they are hundreds time smaller. Based on these findings, we posit that LLM predictions can be used as a warmup method in real-world applications and human experts remain indispensable in tasks involving data annotation driven by domain-specific knowledge.