Goto

Collaborating Authors

 Zhang, Qiming


Deployment-friendly Lane-changing Intention Prediction Powered by Brain-inspired Spiking Neural Networks

arXiv.org Artificial Intelligence

Accurate and real-time prediction of surrounding vehicles' lane-changing intentions is a critical challenge in deploying safe and efficient autonomous driving systems in open-world scenarios. Existing high-performing methods remain hard to deploy due to their high computational cost, long training times, and excessive memory requirements. Here, we propose an efficient lane-changing intention prediction approach based on brain-inspired Spiking Neural Networks (SNN). By leveraging the event-driven nature of SNN, the proposed approach enables us to encode the vehicle's states in a more efficient manner. Comparison experiments conducted on HighD and NGSIM datasets demonstrate that our method significantly improves training efficiency and reduces deployment costs while maintaining comparable prediction accuracy. Particularly, compared to the baseline, our approach reduces training time by 75% and memory usage by 99.9%. These results validate the efficiency and reliability of our method in lane-changing predictions, highlighting its potential for safe and efficient autonomous driving systems while offering significant advantages in deployment, including reduced training time, lower memory usage, and faster inference.


Towards Responsible and Reliable Traffic Flow Prediction with Large Language Models

arXiv.org Artificial Intelligence

Traffic forecasting is crucial for intelligent transportation systems. It has experienced significant advancements thanks to the power of deep learning in capturing latent patterns of traffic data. However, recent deep-learning architectures require intricate model designs and lack an intuitive understanding of the mapping from input data to predicted results. Achieving both accuracy and responsibility in traffic prediction models remains a challenge due to the complexity of traffic data and the inherent opacity of deep learning models. To tackle these challenges, we propose a Responsible and Reliable Traffic flow forecasting model with Large Language Models (R2T-LLM), which leverages large language models (LLMs) to generate responsible traffic predictions. By transferring multi-modal traffic data into natural language descriptions, R2T-LLM captures complex spatial-temporal patterns and external factors from comprehensive traffic data. The LLM framework is fine-tuned using language-based instructions to align with spatial-temporal traffic flow data. Empirically, R2T-LLM shows competitive accuracy compared with deep learning baselines, while providing an intuitive and reliable explanation for predictions. We discuss the spatial-temporal and input dependencies for conditional future flow forecasting, showcasing R2T-LLM's potential for diverse city prediction tasks. This paper contributes to advancing accountable traffic prediction models and lays a foundation for future exploration of LLM applications in transportation. To the best of our knowledge, this is the first study to use LLM for accountable and reliable prediction of traffic flows.


Data-Centric Evolution in Autonomous Driving: A Comprehensive Survey of Big Data System, Data Mining, and Closed-Loop Technologies

arXiv.org Artificial Intelligence

The aspiration of the next generation's autonomous driving (AD) technology relies on the dedicated integration and interaction among intelligent perception, prediction, planning, and low-level control. There has been a huge bottleneck regarding the upper bound of autonomous driving algorithm performance, a consensus from academia and industry believes that the key to surmount the bottleneck lies in data-centric autonomous driving technology. Recent advancement in AD simulation, closed-loop model training, and AD big data engine have gained some valuable experience. However, there is a lack of systematic knowledge and deep understanding regarding how to build efficient data-centric AD technology for AD algorithm self-evolution and better AD big data accumulation. To fill in the identified research gaps, this article will closely focus on reviewing the state-of-the-art data-driven autonomous driving technologies, with an emphasis on the comprehensive taxonomy of autonomous driving datasets characterized by milestone generations, key features, data acquisition settings, etc. Furthermore, we provide a systematic review of the existing benchmark closed-loop AD big data pipelines from the industrial frontier, including the procedure of closed-loop frameworks, key technologies, and empirical studies. Finally, the future directions, potential applications, limitations and concerns are discussed to arouse efforts from both academia and industry for promoting the further development of autonomous driving. The project repository is available at: https://github.com/LincanLi98/Awesome-Data-Centric-Autonomous-Driving.


ESSAformer: Efficient Transformer for Hyperspectral Image Super-resolution

arXiv.org Artificial Intelligence

Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation. However, the prevailing CNN-based approaches have shown limitations in building long-range dependencies and capturing interaction information between spectral features. This results in inadequate utilization of spectral information and artifacts after upsampling. To address this issue, we propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure. Specifically, we first introduce a robust and spectral-friendly similarity metric, \ie, the spectral correlation coefficient of the spectrum (SCC), to replace the original attention matrix and incorporates inductive biases into the model to facilitate training. Built upon it, we further utilize the kernelizable attention technique with theoretical support to form a novel efficient SCC-kernel-based self-attention (ESSA) and reduce attention computation to linear complexity. ESSA enlarges the receptive field for features after upsampling without bringing much computation and allows the model to effectively utilize spatial-spectral information from different scales, resulting in the generation of more natural high-resolution images. Without the need for pretraining on large-scale datasets, our experiments demonstrate ESSA's effectiveness in both visual quality and quantitative results.


Revolutionizing Agrifood Systems with Artificial Intelligence: A Survey

arXiv.org Artificial Intelligence

With the world population rapidly increasing, transforming our agrifood systems to be more productive, efficient, safe, and sustainable is crucial to mitigate potential food shortages. Recently, artificial intelligence (AI) techniques such as deep learning (DL) have demonstrated their strong abilities in various areas, including language, vision, remote sensing (RS), and agrifood systems applications. However, the overall impact of AI on agrifood systems remains unclear. In this paper, we thoroughly review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry. Firstly, we summarize the data acquisition methods in agrifood systems, including acquisition, storage, and processing techniques. Secondly, we present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery, covering topics such as agrifood classification, growth monitoring, yield prediction, and quality assessment. Furthermore, we highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI. We hope this survey could offer an overall picture to newcomers in the field and serve as a starting point for their further research.


1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results

arXiv.org Artificial Intelligence

The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.


Structured Deep Neural Network Pruning by Varying Regularization Parameters

arXiv.org Machine Learning

Convolutional Neural Networks (CNN's) are restricted by their massive computation and high storage. Parameter pruning is a promising approach for CNN compression and acceleration, which aims at eliminating redundant model parameters with tolerable performance loss. Despite its effectiveness, existing regularization-based parameter pruning methods usually assign a fixed regularization parameter to all weights, which neglects the fact that different weights may have different importance to CNN. To solve this problem, we propose a theoretically sound regularization-based pruning method to incrementally assign different regularization parameters to different weights based on their importance to the network. On AlexNet and VGG-16, our method can achieve 4x theoretical speedup with similar accuracies compared with the baselines. For ResNet-50, the proposed method also achieves 2x acceleration and only suffers 0.1% top-5 accuracy loss.


Structured Probabilistic Pruning for Convolutional Neural Network Acceleration

arXiv.org Machine Learning

Although deep Convolutional Neural Network (CNN) has shown better performance in various computer vision tasks, its application is restricted by a significant increase in storage and computation. Among CNN simplification techniques, parameter pruning is a promising approach which aims at reducing the number of weights of various layers without intensively reducing the original accuracy. In this paper, we propose a novel progressive parameter pruning method, named Structured Probabilistic Pruning (SPP), which effectively prunes weights of convolutional layers in a probabilistic manner. Specifically, unlike existing deterministic pruning approaches, where unimportant weights are permanently eliminated, SPP introduces a pruning probability for each weight, and pruning is guided by sampling from the pruning probabilities. A mechanism is designed to increase and decrease pruning probabilities based on importance criteria for the training process. Experiments show that, with 4x speedup, SPP can accelerate AlexNet with only 0.3% loss of top-5 accuracy and VGG-16 with 0.8% loss of top-5 accuracy in ImageNet classification. Moreover, SPP can be directly applied to accelerate multi-branch CNN networks, such as ResNet, without specific adaptations. Our 2x speedup ResNet-50 only suffers 0.8% loss of top-5 accuracy on ImageNet. We further prove the effectiveness of our method on transfer learning task on Flower-102 dataset with AlexNet.