Zhang, Long
OptMetaOpenFOAM: Large Language Model Driven Chain of Thought for Sensitivity Analysis and Parameter Optimization based on CFD
Chen, Yuxuan, Zhang, Long, Zhu, Xu, Zhou, Hua, Ren, Zhuyin
Merging natural language interfaces with computational fluid dynamics (CFD) workflows presents transformative opportunities for both industry and research. In this study, we introduce OptMetaOpenFOAM - a novel framework that bridges MetaOpenFOAM with external analysis and optimization tool libraries through a large language model (LLM)-driven chain-of-thought (COT) methodology. By automating complex CFD tasks via natural language inputs, the framework empowers non-expert users to perform sensitivity analyses and parameter optimizations with markedly improved efficiency. The test dataset comprises 11 distinct CFD analysis or optimization tasks, including a baseline simulation task derived from an OpenFOAM tutorial covering fluid dynamics, combustion, and heat transfer. Results confirm that OptMetaOpenFOAM can accurately interpret user requirements expressed in natural language and effectively invoke external tool libraries alongside MetaOpenFOAM to complete the tasks. Furthermore, validation on a non-OpenFOAM tutorial case - namely, a hydrogen combustion chamber - demonstrates that a mere 200-character natural language input can trigger a sequence of simulation, postprocessing, analysis, and optimization tasks spanning over 2,000 lines of code. These findings underscore the transformative potential of LLM-driven COT methodologies in linking external tool for advanced analysis and optimization, positioning OptMetaOpenFOAM as an effective tool that streamlines CFD simulations and enhances their convenience and efficiency for both industrial and research applications. Code is available at https://github.com/Terry-cyx/MetaOpenFOAM.
SessionRec: Next Session Prediction Paradigm For Generative Sequential Recommendation
Huang, Lei, Guo, Hao, Peng, Linzhi, Zhang, Long, Wang, Xiaoteng, Wang, Daoyuan, Wang, Shichao, Wang, Jinpeng, Wang, Lei, Chen, Sheng
We introduce SessionRec, a novel next-session prediction paradigm (NSPP) for generative sequential recommendation, addressing the fundamental misalignment between conventional next-item prediction paradigm (NIPP) and real-world recommendation scenarios. Unlike NIPP's item-level autoregressive generation that contradicts actual session-based user interactions, our framework introduces a session-aware representation learning through hierarchical sequence aggregation (intra/inter-session), reducing attention computation complexity while enabling implicit modeling of massive negative interactions, and a session-based prediction objective that better captures users' diverse interests through multi-item recommendation in next sessions. Moreover, we found that incorporating a rank loss for items within the session under the next session prediction paradigm can significantly improve the ranking effectiveness of generative sequence recommendation models. We also verified that SessionRec exhibits clear power-law scaling laws similar to those observed in LLMs. Extensive experiments conducted on public datasets and online A/B test in Meituan App demonstrate the effectiveness of SessionRec. The proposed paradigm establishes new foundations for developing industrial-scale generative recommendation systems through its model-agnostic architecture and computational efficiency.
Psychometric-Based Evaluation for Theorem Proving with Large Language Models
Zhang, Jianyu, Zhao, Yongwang, Zhang, Long, Hu, Jilin, Luan, Xiaokun, Xu, Zhiwei, Yang, Feng
Large language models (LLMs) for formal theorem proving have become a prominent research focus. At present, the proving ability of these LLMs is mainly evaluated through proof pass rates on datasets such as miniF2F. However, this evaluation method overlooks the varying importance of theorems. As a result, it fails to highlight the real performance disparities between LLMs and leads to high evaluation costs. This study proposes a psychometric-based evaluation method for theorem proving with LLMs, comprising two main components: Dataset Annotation and Adaptive Evaluation. First, we propose a metric calculation method to annotate the dataset with difficulty and discrimination metrics. Specifically, we annotate each theorem in the miniF2F dataset and grade them into varying difficulty levels according to the performance of LLMs, resulting in an enhanced dataset: miniF2F-Graded. Experimental results show that the difficulty grading in miniF2F-Graded better reflects the theorem difficulty perceived by LLMs. Secondly, we design an adaptive evaluation method to dynamically select the most suitable theorems for testing based on the annotated metrics and the real-time performance of LLMs. We apply this method to evaluate 10 LLMs. The results show that our method finely highlights the performance disparities between LLMs. It also reduces evaluation costs by using only 23% of the theorems in the dataset.
Fraudulent User Detection Via Behavior Information Aggregation Network (BIAN) On Large-Scale Financial Social Network
Hu, Hanyi, Zhang, Long, Li, Shuan, Liu, Zhi, Yang, Yao, Na, Chongning
Financial frauds cause billions of losses annually and yet it lacks efficient approaches in detecting frauds considering user profile and their behaviors simultaneously in social network . A social network forms a graph structure whilst Graph neural networks (GNN), a promising research domain in Deep Learning, can seamlessly process non-Euclidean graph data . In financial fraud detection, the modus operandi of criminals can be identified by analyzing user profile and their behaviors such as transaction, loaning etc. as well as their social connectivity. Currently, most GNNs are incapable of selecting important neighbors since the neighbors' edge attributes (i.e., behaviors) are ignored. In this paper, we propose a novel behavior information aggregation network (BIAN) to combine the user behaviors with other user features. Different from its close "relatives" such as Graph Attention Networks (GAT) and Graph Transformer Networks (GTN), it aggregates neighbors based on neighboring edge attribute distribution, namely, user behaviors in financial social network. The experimental results on a real-world large-scale financial social network dataset, DGraph, show that BIAN obtains the 10.2% gain in AUROC comparing with the State-Of-The-Art models.
Towards On-Device Federated Learning: A Direct Acyclic Graph-based Blockchain Approach
Cao, Mingrui, Zhang, Long, Cao, Bin
Due to the distributed characteristics of Federated Learning (FL), the vulnerability of global model and coordination of devices are the main obstacle. As a promising solution of decentralization, scalability and security, leveraging blockchain in FL has attracted much attention in recent years. However, the traditional consensus mechanisms designed for blockchain like Proof of Work (PoW) would cause extreme resource consumption, which reduces the efficiency of FL greatly, especially when the participating devices are wireless and resource-limited. In order to address device asynchrony and anomaly detection in FL while avoiding the extra resource consumption caused by blockchain, this paper introduces a framework for empowering FL using Direct Acyclic Graph (DAG)-based blockchain systematically (DAG-FL). Accordingly, DAG-FL is first introduced from a three-layer architecture in details, and then two algorithms DAG-FL Controlling and DAG-FL Updating are designed running on different nodes to elaborate the operation of DAG-FL consensus mechanism. After that, a Poisson process model is formulated to discuss that how to set deployment parameters to maintain DAG-FL stably in different federated learning tasks. The extensive simulations and experiments show that DAG-FL can achieve better performance in terms of training efficiency and model accuracy compared with the typical existing on-device federated learning systems as the benchmarks.
A Noise-Sensitivity-Analysis-Based Test Prioritization Technique for Deep Neural Networks
Zhang, Long, Sun, Xuechao, Li, Yong, Zhang, Zhenyu
Deep neural networks (DNNs) have been widely used in the fields such as natural language processing, computer vision and image recognition. But several studies have been shown that deep neural networks can be easily fooled by artificial examples with some perturbations, which are widely known as adversarial examples. Adversarial examples can be used to attack deep neural networks or to improve the robustness of deep neural networks. A common way of generating adversarial examples is to first generate some noises and then add them into original examples. In practice, different examples have different noise-sensitive. To generate an effective adversarial example, it may be necessary to add a lot of noise to low noise-sensitive example, which may make the adversarial example meaningless. In this paper, we propose a noise-sensitivity-analysis-based test prioritization technique to pick out examples by their noise sensitivity. We construct an experiment to validate our approach on four image sets and two DNN models, which shows that examples are sensitive to noise and our method can effectively pick out examples by their noise sensitivity.