Zhang, Lichao
Accompanied Singing Voice Synthesis with Fully Text-controlled Melody
Li, Ruiqi, Hong, Zhiqing, Wang, Yongqi, Zhang, Lichao, Huang, Rongjie, Zheng, Siqi, Zhao, Zhou
Text-to-song (TTSong) is a music generation task that synthesizes accompanied singing voices. Current TTSong methods, inherited from singing voice synthesis (SVS), require melody-related information that can sometimes be impractical, such as music scores or MIDI sequences. We present MelodyLM, the first TTSong model that generates high-quality song pieces with fully text-controlled melodies, achieving minimal user requirements and maximum control flexibility. MelodyLM explicitly models MIDI as the intermediate melody-related feature and sequentially generates vocal tracks in a language model manner, conditioned on textual and vocal prompts. The accompaniment music is subsequently synthesized by a latent diffusion model with hybrid conditioning for temporal alignment. With minimal requirements, users only need to input lyrics and a reference voice to synthesize a song sample. For full control, just input textual prompts or even directly input MIDI. Experimental results indicate that MelodyLM achieves superior performance in terms of both objective and subjective metrics. Audio samples are available at https://melodylm666.github.io.
Unveiling the Impact of Multi-Modal Interactions on User Engagement: A Comprehensive Evaluation in AI-driven Conversations
Zhang, Lichao, Yu, Jia, Zhang, Shuai, Li, Long, Zhong, Yangyang, Liang, Guanbao, Yan, Yuming, Ma, Qing, Weng, Fangsheng, Pan, Fayu, Li, Jing, Xu, Renjun, Lan, Zhenzhong
Large Language Models (LLMs) have significantly advanced user-bot interactions, enabling more complex and coherent dialogues. However, the prevalent text-only modality might not fully exploit the potential for effective user engagement. This paper explores the impact of multi-modal interactions, which incorporate images and audio alongside text, on user engagement in chatbot conversations. We conduct a comprehensive analysis using a diverse set of chatbots and real-user interaction data, employing metrics such as retention rate and conversation length to evaluate user engagement. Our findings reveal a significant enhancement in user engagement with multi-modal interactions compared to text-only dialogues. Notably, the incorporation of a third modality significantly amplifies engagement beyond the benefits observed with just two modalities. These results suggest that multi-modal interactions optimize cognitive processing and facilitate richer information comprehension. This study underscores the importance of multi-modality in chatbot design, offering valuable insights for creating more engaging and immersive AI communication experiences and informing the broader AI community about the benefits of multi-modal interactions in enhancing user engagement.
Efficient Human-AI Coordination via Preparatory Language-based Convention
Guan, Cong, Zhang, Lichao, Fan, Chunpeng, Li, Yichen, Chen, Feng, Li, Lihe, Tian, Yunjia, Yuan, Lei, Yu, Yang
Developing intelligent agents capable of seamless coordination with humans is a critical step towards achieving artificial general intelligence. Existing methods for human-AI coordination typically train an agent to coordinate with a diverse set of policies or with human models fitted from real human data. However, the massively diverse styles of human behavior present obstacles for AI systems with constrained capacity, while high quality human data may not be readily available in real-world scenarios. In this study, we observe that prior to coordination, humans engage in communication to establish conventions that specify individual roles and actions, making their coordination proceed in an orderly manner. Building upon this observation, we propose employing the large language model (LLM) to develop an action plan (or equivalently, a convention) that effectively guides both human and AI. By inputting task requirements, human preferences, the number of agents, and other pertinent information into the LLM, it can generate a comprehensive convention that facilitates a clear understanding of tasks and responsibilities for all parties involved. Furthermore, we demonstrate that decomposing the convention formulation problem into sub-problems with multiple new sessions being sequentially employed and human feedback, will yield a more efficient coordination convention. Experimental evaluations conducted in the Overcooked-AI environment, utilizing a human proxy model, highlight the superior performance of our proposed method compared to existing learning-based approaches. When coordinating with real humans, our method achieves better alignment with human preferences and an average performance improvement of 15% compared to the state-of-the-art.
AV-TranSpeech: Audio-Visual Robust Speech-to-Speech Translation
Huang, Rongjie, Liu, Huadai, Cheng, Xize, Ren, Yi, Li, Linjun, Ye, Zhenhui, He, Jinzheng, Zhang, Lichao, Liu, Jinglin, Yin, Xiang, Zhao, Zhou
Direct speech-to-speech translation (S2ST) aims to convert speech from one language into another, and has demonstrated significant progress to date. Despite the recent success, current S2ST models still suffer from distinct degradation in noisy environments and fail to translate visual speech (i.e., the movement of lips and teeth). In this work, we present AV-TranSpeech, the first audio-visual speech-to-speech (AV-S2ST) translation model without relying on intermediate text. AV-TranSpeech complements the audio stream with visual information to promote system robustness and opens up a host of practical applications: dictation or dubbing archival films. To mitigate the data scarcity with limited parallel AV-S2ST data, we 1) explore self-supervised pre-training with unlabeled audio-visual data to learn contextual representation, and 2) introduce cross-modal distillation with S2ST models trained on the audio-only corpus to further reduce the requirements of visual data. Experimental results on two language pairs demonstrate that AV-TranSpeech outperforms audio-only models under all settings regardless of the type of noise. With low-resource audio-visual data (10h, 30h), cross-modal distillation yields an improvement of 7.6 BLEU on average compared with baselines. Audio samples are available at https://AV-TranSpeech.github.io
AlignSTS: Speech-to-Singing Conversion via Cross-Modal Alignment
Li, Ruiqi, Huang, Rongjie, Zhang, Lichao, Liu, Jinglin, Zhao, Zhou
The speech-to-singing (STS) voice conversion task aims to generate singing samples corresponding to speech recordings while facing a major challenge: the alignment between the target (singing) pitch contour and the source (speech) content is difficult to learn in a text-free situation. This paper proposes AlignSTS, an STS model based on explicit cross-modal alignment, which views speech variance such as pitch and content as different modalities. Inspired by the mechanism of how humans will sing the lyrics to the melody, AlignSTS: 1) adopts a novel rhythm adaptor to predict the target rhythm representation to bridge the modality gap between content and pitch, where the rhythm representation is computed in a simple yet effective way and is quantized into a discrete space; and 2) uses the predicted rhythm representation to re-align the content based on cross-attention and conducts a cross-modal fusion for re-synthesize. Extensive experiments show that AlignSTS achieves superior performance in terms of both objective and subjective metrics. Audio samples are available at https://alignsts.github.io.
Learning Robust Self-attention Features for Speech Emotion Recognition with Label-adaptive Mixup
Kang, Lei, Zhang, Lichao, Jiang, Dazhi
Speech Emotion Recognition (SER) is to recognize human emotions in a natural verbal interaction scenario with machines, which is considered as a challenging problem due to the ambiguous human emotions. Despite the recent progress in SER, state-of-the-art models struggle to achieve a satisfactory performance. We propose a self-attention based method with combined use of label-adaptive mixup and center loss. By adapting label probabilities in mixup and fitting center loss to the mixup training scheme, our proposed method achieves a superior performance to the state-of-the-art methods.
TranSpeech: Speech-to-Speech Translation With Bilateral Perturbation
Huang, Rongjie, Liu, Jinglin, Liu, Huadai, Ren, Yi, Zhang, Lichao, He, Jinzheng, Zhao, Zhou
Specifically, a sequence of discrete representations derived in a self-supervised manner are predicted from the model and passed to a vocoder for speech reconstruction, while still facing the following challenges: 1) Acoustic multimodality: the discrete units derived from speech with same content could be indeterministic due to the acoustic property (e.g., rhythm, pitch, and energy), which causes deterioration of translation accuracy; 2) high latency: current S2ST systems utilize autoregressive models which predict each unit conditioned on the sequence previously generated, failing to take full advantage of parallelism. In this work, we propose TranSpeech, a speech-to-speech translation model with bilateral perturbation. To alleviate the acoustic multimodal problem, we propose bilateral perturbation (BiP), which consists of the style normalization and information enhancement stages, to learn only the linguistic information from speech samples and generate more deterministic representations. With reduced multimodality, we step forward and become the first to establish a non-autoregressive S2ST technique, which repeatedly masks and predicts unit choices and produces high-accuracy results in just a few cycles. Experimental results on three language pairs demonstrate that BiP yields an improvement of 2.9 BLEU on average compared with a baseline textless S2ST model. Moreover, our parallel decoding shows a significant reduction of inference latency, enabling speedup up to 21.4x than autoregressive technique. Speech-to-speech translation (S2ST) aims at converting speech from one language into speech in another, significantly breaking down communication barriers between people not sharing a common language. Among the conventional method (Lavie et al., 1997; Nakamura et al., 2006; Wahlster, 2013), the cascaded system of automatic speech recognition (ASR), machine translation (MT), or speech-to-text translation (S2T) followed by text-to-speech synthesis (TTS) have demonstrated reasonable results yet suffering from expensive computational costs.
A Chinese Multi-type Complex Questions Answering Dataset over Wikidata
Zou, Jianyun, Yang, Min, Zhang, Lichao, Xu, Yechen, Pan, Qifan, Jiang, Fengqing, Qin, Ran, Wang, Shushu, He, Yifan, Huang, Songfang, Zhao, Zhou
Complex Knowledge Base Question Answering is a popular area of research in the past decade. Recent public datasets have led to encouraging results in this field, but are mostly limited to English and only involve a small number of question types and relations, hindering research in more realistic settings and in languages other than English. In addition, few state-of-the-art KBQA models are trained on Wikidata, one of the most popular real-world knowledge bases. We propose CLC-QuAD, the first large scale complex Chinese semantic parsing dataset over Wikidata to address these challenges. Together with the dataset, we present a text-to-SPARQL baseline model, which can effectively answer multi-type complex questions, such as factual questions, dual intent questions, boolean questions, and counting questions, with Wikidata as the background knowledge. We finally analyze the performance of SOTA KBQA models on this dataset and identify the challenges facing Chinese KBQA.