Zhang, Jingwei
Gemini Robotics: Bringing AI into the Physical World
Gemini Robotics Team, null, Abeyruwan, Saminda, Ainslie, Joshua, Alayrac, Jean-Baptiste, Arenas, Montserrat Gonzalez, Armstrong, Travis, Balakrishna, Ashwin, Baruch, Robert, Bauza, Maria, Blokzijl, Michiel, Bohez, Steven, Bousmalis, Konstantinos, Brohan, Anthony, Buschmann, Thomas, Byravan, Arunkumar, Cabi, Serkan, Caluwaerts, Ken, Casarini, Federico, Chang, Oscar, Chen, Jose Enrique, Chen, Xi, Chiang, Hao-Tien Lewis, Choromanski, Krzysztof, D'Ambrosio, David, Dasari, Sudeep, Davchev, Todor, Devin, Coline, Di Palo, Norman, Ding, Tianli, Dostmohamed, Adil, Driess, Danny, Du, Yilun, Dwibedi, Debidatta, Elabd, Michael, Fantacci, Claudio, Fong, Cody, Frey, Erik, Fu, Chuyuan, Giustina, Marissa, Gopalakrishnan, Keerthana, Graesser, Laura, Hasenclever, Leonard, Heess, Nicolas, Hernaez, Brandon, Herzog, Alexander, Hofer, R. Alex, Humplik, Jan, Iscen, Atil, Jacob, Mithun George, Jain, Deepali, Julian, Ryan, Kalashnikov, Dmitry, Karagozler, M. Emre, Karp, Stefani, Kew, Chase, Kirkland, Jerad, Kirmani, Sean, Kuang, Yuheng, Lampe, Thomas, Laurens, Antoine, Leal, Isabel, Lee, Alex X., Lee, Tsang-Wei Edward, Liang, Jacky, Lin, Yixin, Maddineni, Sharath, Majumdar, Anirudha, Michaely, Assaf Hurwitz, Moreno, Robert, Neunert, Michael, Nori, Francesco, Parada, Carolina, Parisotto, Emilio, Pastor, Peter, Pooley, Acorn, Rao, Kanishka, Reymann, Krista, Sadigh, Dorsa, Saliceti, Stefano, Sanketi, Pannag, Sermanet, Pierre, Shah, Dhruv, Sharma, Mohit, Shea, Kathryn, Shu, Charles, Sindhwani, Vikas, Singh, Sumeet, Soricut, Radu, Springenberg, Jost Tobias, Sterneck, Rachel, Surdulescu, Razvan, Tan, Jie, Tompson, Jonathan, Vanhoucke, Vincent, Varley, Jake, Vesom, Grace, Vezzani, Giulia, Vinyals, Oriol, Wahid, Ayzaan, Welker, Stefan, Wohlhart, Paul, Xia, Fei, Xiao, Ted, Xie, Annie, Xie, Jinyu, Xu, Peng, Xu, Sichun, Xu, Ying, Xu, Zhuo, Yang, Yuxiang, Yao, Rui, Yaroshenko, Sergey, Yu, Wenhao, Yuan, Wentao, Zhang, Jingwei, Zhang, Tingnan, Zhou, Allan, Zhou, Yuxiang
Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.
Identification of Novel Modes in Generative Models via Fourier-based Differential Clustering
Zhang, Jingwei, Jalali, Mohammad, Li, Cheuk Ting, Farnia, Farzan
An interpretable comparison of generative models requires the identification of sample types produced more frequently by each of the involved models. While several quantitative scores have been proposed in the literature to rank different generative models, such score-based evaluations do not reveal the nuanced differences between the generative models in capturing various sample types. In this work, we attempt to solve a differential clustering problem to detect sample types expressed differently by two generative models. To solve the differential clustering problem, we propose a method called Fourier-based Identification of Novel Clusters (FINC) to identify modes produced by a generative model with a higher frequency in comparison to a reference distribution. FINC provides a scalable stochastic algorithm based on random Fourier features to estimate the eigenspace of kernel covariance matrices of two generative models and utilize the principal eigendirections to detect the sample types present more dominantly in each model. We demonstrate the application of the FINC method to large-scale computer vision datasets and generative model frameworks. Our numerical results suggest the scalability of the developed Fourier-based method in highlighting the sample types produced with different frequencies by widely-used generative models. Code is available at \url{https://github.com/buyeah1109/FINC}
Towards a Scalable Reference-Free Evaluation of Generative Models
Ospanov, Azim, Zhang, Jingwei, Jalali, Mohammad, Cao, Xuenan, Bogdanov, Andrej, Farnia, Farzan
While standard evaluation scores for generative models are mostly reference-based, a reference-dependent assessment of generative models could be generally difficult due to the unavailability of applicable reference datasets. Recently, the reference-free entropy scores, VENDI and RKE, have been proposed to evaluate the diversity of generated data. However, estimating these scores from data leads to significant computational costs for large-scale generative models. In this work, we leverage the random Fourier features framework to reduce the computational price and propose the Fourier-based Kernel Entropy Approximation (FKEA) method. We utilize FKEA's approximated eigenspectrum of the kernel matrix to efficiently estimate the mentioned entropy scores. Furthermore, we show the application of FKEA's proxy eigenvectors to reveal the method's identified modes in evaluating the diversity of produced samples. We provide a stochastic implementation of the FKEA assessment algorithm with a complexity $O(n)$ linearly growing with sample size $n$. We extensively evaluate FKEA's numerical performance in application to standard image, text, and video datasets. Our empirical results indicate the method's scalability and interpretability applied to large-scale generative models. The codebase is available at https://github.com/aziksh-ospanov/FKEA.
MoreauPruner: Robust Pruning of Large Language Models against Weight Perturbations
Wang, Zixiao, Zhang, Jingwei, Zhao, Wenqian, Farnia, Farzan, Yu, Bei
Few-shot gradient methods have been extensively utilized in existing model pruning methods, where the model weights are regarded as static values and the effects of potential weight perturbations are not considered. However, the widely used large language models (LLMs) have several billion model parameters, which could increase the fragility of few-shot gradient pruning. In this work, we experimentally show that one-shot gradient pruning algorithms could lead to unstable results under perturbations to model weights. And the minor error of switching between data formats bfloat16 and float16 could result in drastically different outcomes. To address such instabilities, we leverage optimization analysis and propose an LLM structural pruning method, called MoreauPruner, with provable robustness against weight perturbations. In MoreauPruner, the model weight importance is estimated based on the neural network's Moreau envelope, which can be flexibly combined with $\ell_1$-norm regularization techniques to induce the sparsity required in the pruning task. We extensively evaluate the MoreauPruner algorithm on several well-known LLMs, including LLaMA-7B, LLaMA-13B, LLaMA3-8B, and Vicuna-7B. Our numerical results suggest the robustness of MoreauPruner against weight perturbations, and indicate the MoreauPruner's successful accuracy-based scores in comparison to several existing pruning methods. We have released the code in \url{https://github.com/ShiningSord/MoreauPruner}.
An Empirical Study of Training State-of-the-Art LiDAR Segmentation Models
Sun, Jiahao, Qing, Chunmei, Xu, Xiang, Kong, Lingdong, Liu, Youquan, Li, Li, Zhu, Chenming, Zhang, Jingwei, Xiao, Zeqi, Chen, Runnan, Wang, Tai, Zhang, Wenwei, Chen, Kai
In the rapidly evolving field of autonomous driving, precise segmentation of LiDAR data is crucial for understanding complex 3D environments. Traditional approaches often rely on disparate, standalone codebases, hindering unified advancements and fair benchmarking across models. To address these challenges, we introduce MMDetection3D-lidarseg, a comprehensive toolbox designed for the efficient training and evaluation of state-of-the-art LiDAR segmentation models. We support a wide range of segmentation models and integrate advanced data augmentation techniques to enhance robustness and generalization. Additionally, the toolbox provides support for multiple leading sparse convolution backends, optimizing computational efficiency and performance. By fostering a unified framework, MMDetection3D-lidarseg streamlines development and benchmarking, setting new standards for research and application. Our extensive benchmark experiments on widely-used datasets demonstrate the effectiveness of the toolbox. The codebase and trained models have been publicly available, promoting further research and innovation in the field of LiDAR segmentation for autonomous driving.
Sparse Domain Transfer via Elastic Net Regularization
Zhang, Jingwei, Farnia, Farzan
Transportation of samples across different domains is a central task in several machine learning problems. A sensible requirement for domain transfer tasks in computer vision and language domains is the sparsity of the transportation map, i.e., the transfer algorithm aims to modify the least number of input features while transporting samples across the source and target domains. In this work, we propose Elastic Net Optimal Transport (ENOT) to address the sparse distribution transfer problem. The ENOT framework utilizes the $L_1$-norm and $L_2$-norm regularization mechanisms to find a sparse and stable transportation map between the source and target domains. To compute the ENOT transport map, we consider the dual formulation of the ENOT optimization task and prove that the sparsified gradient of the optimal potential function in the ENOT's dual representation provides the ENOT transport map. Furthermore, we demonstrate the application of the ENOT framework to perform feature selection for sparse domain transfer. We present the numerical results of applying ENOT to several domain transfer problems for synthetic Gaussian mixtures and real image and text data. Our empirical results indicate the success of the ENOT framework in identifying a sparse domain transport map.
An Interpretable Evaluation of Entropy-based Novelty of Generative Models
Zhang, Jingwei, Li, Cheuk Ting, Farnia, Farzan
The massive developments of generative model frameworks and architectures require principled methods for the evaluation of a model's novelty compared to a reference dataset or baseline generative models. While the recent literature has extensively studied the evaluation of the quality, diversity, and generalizability of generative models, the assessment of a model's novelty compared to a baseline model has not been adequately studied in the machine learning community. In this work, we focus on the novelty assessment under multi-modal generative models and attempt to answer the following question: Given the samples of a generative model $\mathcal{G}$ and a reference dataset $\mathcal{S}$, how can we discover and count the modes expressed by $\mathcal{G}$ more frequently than in $\mathcal{S}$. We introduce a spectral approach to the described task and propose the Kernel-based Entropic Novelty (KEN) score to quantify the mode-based novelty of distribution $P_\mathcal{G}$ with respect to distribution $P_\mathcal{S}$. We analytically interpret the behavior of the KEN score under mixture distributions with sub-Gaussian components. Next, we develop a method based on Cholesky decomposition to compute the KEN score from observed samples. We support the KEN-based quantification of novelty by presenting several numerical results on synthetic and real image distributions. Our numerical results indicate the success of the proposed approach in detecting the novel modes and the comparison of state-of-the-art generative models.
Genie: Generative Interactive Environments
Bruce, Jake, Dennis, Michael, Edwards, Ashley, Parker-Holder, Jack, Shi, Yuge, Hughes, Edward, Lai, Matthew, Mavalankar, Aditi, Steigerwald, Richie, Apps, Chris, Aytar, Yusuf, Bechtle, Sarah, Behbahani, Feryal, Chan, Stephanie, Heess, Nicolas, Gonzalez, Lucy, Osindero, Simon, Ozair, Sherjil, Reed, Scott, Zhang, Jingwei, Zolna, Konrad, Clune, Jeff, de Freitas, Nando, Singh, Satinder, Rocktäschel, Tim
We introduce Genie, the first generative interactive environment trained in an unsupervised manner from unlabelled Internet videos. The model can be prompted to generate an endless variety of action-controllable virtual worlds described through text, synthetic images, photographs, and even sketches. At 11B parameters, Genie can be considered a foundation world model. It is comprised of a spatiotemporal video tokenizer, an autoregressive dynamics model, and a simple and scalable latent action model. Genie enables users to act in the generated environments on a frame-by-frame basis despite training without any ground-truth action labels or other domain-specific requirements typically found in the world model literature. Further the resulting learned latent action space facilitates training agents to imitate behaviors from unseen videos, opening the path for training generalist agents of the future.
Offline Actor-Critic Reinforcement Learning Scales to Large Models
Springenberg, Jost Tobias, Abdolmaleki, Abbas, Zhang, Jingwei, Groth, Oliver, Bloesch, Michael, Lampe, Thomas, Brakel, Philemon, Bechtle, Sarah, Kapturowski, Steven, Hafner, Roland, Heess, Nicolas, Riedmiller, Martin
We show that offline actor-critic reinforcement learning can scale to large models - such as transformers - and follows similar scaling laws as supervised learning. We find that offline actor-critic algorithms can outperform strong, supervised, behavioral cloning baselines for multi-task training on a large dataset containing both sub-optimal and expert behavior on 132 continuous control tasks. We introduce a Perceiver-based actor-critic model and elucidate the key model features needed to make offline RL work with self- and cross-attention modules. Overall, we find that: i) simple offline actor critic algorithms are a natural choice for gradually moving away from the currently predominant paradigm of behavioral cloning, and ii) via offline RL it is possible to learn multi-task policies that master many domains simultaneously, including real robotics tasks, from sub-optimal demonstrations or self-generated data.
Mastering Stacking of Diverse Shapes with Large-Scale Iterative Reinforcement Learning on Real Robots
Lampe, Thomas, Abdolmaleki, Abbas, Bechtle, Sarah, Huang, Sandy H., Springenberg, Jost Tobias, Bloesch, Michael, Groth, Oliver, Hafner, Roland, Hertweck, Tim, Neunert, Michael, Wulfmeier, Markus, Zhang, Jingwei, Nori, Francesco, Heess, Nicolas, Riedmiller, Martin
Reinforcement learning solely from an agent's self-generated data is often believed to be infeasible for learning on real robots, due to the amount of data needed. However, if done right, agents learning from real data can be surprisingly efficient through re-using previously collected sub-optimal data. In this paper we demonstrate how the increased understanding of off-policy learning methods and their embedding in an iterative online/offline scheme (``collect and infer'') can drastically improve data-efficiency by using all the collected experience, which empowers learning from real robot experience only. Moreover, the resulting policy improves significantly over the state of the art on a recently proposed real robot manipulation benchmark. Our approach learns end-to-end, directly from pixels, and does not rely on additional human domain knowledge such as a simulator or demonstrations.