Goto

Collaborating Authors

 Zhang, Jingbo


A Comprehensive Survey on Joint Resource Allocation Strategies in Federated Edge Learning

arXiv.org Artificial Intelligence

Federated Edge Learning (FEL), an emerging distributed Machine Learning (ML) paradigm, enables model training in a distributed environment while ensuring user privacy by using physical separation for each user data. However, with the development of complex application scenarios such as the Internet of Things (IoT) and Smart Earth, the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands. Therefore, joint resource optimization may be the key solution to the scaling problem. This paper simultaneously addresses the multifaceted challenges of computation and communication, with the growing multiple resource demands. We systematically review the joint allocation strategies for different resources (computation, data, communication, and network topology) in FEL, and summarize the advantages in improving system efficiency, reducing latency, enhancing resource utilization and enhancing robustness. In addition, we present the potential ability of joint optimization to enhance privacy preservation by reducing communication requirements, indirectly. This work not only provides theoretical support for resource management in federated learning (FL) systems, but also provides ideas for potential optimal deployment in multiple real-world scenarios. By thoroughly discussing the current challenges and future research directions, it also provides some important insights into multi-resource optimization in complex application environments.


Generative Object Insertion in Gaussian Splatting with a Multi-View Diffusion Model

arXiv.org Artificial Intelligence

Generating and inserting new objects into 3D content is a compelling approach for achieving versatile scene recreation. Existing methods, which rely on SDS optimization or single-view inpainting, often struggle to produce high-quality results. To address this, we propose a novel method for object insertion in 3D content represented by Gaussian Splatting. Our approach introduces a multi-view diffusion model, dubbed MVInpainter, which is built upon a pre-trained stable video diffusion model to facilitate view-consistent object inpainting. Within MVInpainter, we incorporate a ControlNet-based conditional injection module to enable controlled and more predictable multi-view generation. After generating the multi-view inpainted results, we further propose a mask-aware 3D reconstruction technique to refine Gaussian Splatting reconstruction from these sparse inpainted views. By leveraging these fabricate techniques, our approach yields diverse results, ensures view-consistent and harmonious insertions, and produces better object quality. Extensive experiments demonstrate that our approach outperforms existing methods.


VQ-NeRF: Neural Reflectance Decomposition and Editing with Vector Quantization

arXiv.org Artificial Intelligence

We propose VQ-NeRF, a two-branch neural network model that incorporates Vector Quantization (VQ) to decompose and edit reflectance fields in 3D scenes. Conventional neural reflectance fields use only continuous representations to model 3D scenes, despite the fact that objects are typically composed of discrete materials in reality. This lack of discretization can result in noisy material decomposition and complicated material editing. To address these limitations, our model consists of a continuous branch and a discrete branch. The continuous branch follows the conventional pipeline to predict decomposed materials, while the discrete branch uses the VQ mechanism to quantize continuous materials into individual ones. By discretizing the materials, our model can reduce noise in the decomposition process and generate a segmentation map of discrete materials. Specific materials can be easily selected for further editing by clicking on the corresponding area of the segmentation outcomes. Additionally, we propose a dropout-based VQ codeword ranking strategy to predict the number of materials in a scene, which reduces redundancy in the material segmentation process. To improve usability, we also develop an interactive interface to further assist material editing. We evaluate our model on both computer-generated and real-world scenes, demonstrating its superior performance. To the best of our knowledge, our model is the first to enable discrete material editing in 3D scenes.