Goto

Collaborating Authors

 Zhang, Jiayang


Foundation-Model-Boosted Multimodal Learning for fMRI-based Neuropathic Pain Drug Response Prediction

arXiv.org Artificial Intelligence

Neuropathic pain, affecting up to 10% of adults, remains difficult to treat due to limited therapeutic efficacy and tolerability. Although resting-state functional MRI (rs-fMRI) is a promising non-invasive measurement of brain biomarkers to predict drug response in therapeutic development, the complexity of fMRI demands machine learning models with substantial capacity. However, extreme data scarcity in neuropathic pain research limits the application of high-capacity models. To address the challenge of data scarcity, we propose FMM$_{TC}$, a Foundation-Model-boosted Multimodal learning framework for fMRI-based neuropathic pain drug response prediction, which leverages both internal multimodal information in pain-specific data and external knowledge from large pain-agnostic data. Specifically, to maximize the value of limited pain-specific data, FMM$_{TC}$ integrates complementary information from two rs-fMRI modalities: Time series and functional Connectivity. FMM$_{TC}$ is further boosted by an fMRI foundation model with its external knowledge from extensive pain-agnostic fMRI datasets enriching limited pain-specific information. Evaluations with an in-house dataset and a public dataset from OpenNeuro demonstrate FMM$_{TC}$'s superior representation ability, generalizability, and cross-dataset adaptability over existing unimodal fMRI models that only consider one of the rs-fMRI modalities. The ablation study validates the effectiveness of multimodal learning and foundation-model-powered external knowledge transfer in FMM$_{TC}$. An integrated gradient-based interpretation study explains how FMM$_{TC}$'s cross-dataset dynamic behaviors enhance its adaptability. In conclusion, FMM$_{TC}$ boosts clinical trials in neuropathic pain therapeutic development by accurately predicting drug responses to improve the participant stratification efficiency.


Classifying the Stoichiometry of Virus-like Particles with Interpretable Machine Learning

arXiv.org Artificial Intelligence

Virus-like particles (VLPs) are valuable for vaccine development due to their immune-triggering properties. Understanding their stoichiometry, the number of protein subunits to form a VLP, is critical for vaccine optimisation. However, current experimental methods to determine stoichiometry are time-consuming and require highly purified proteins. To efficiently classify stoichiometry classes in proteins, we curate a new dataset and propose an interpretable, data-driven pipeline leveraging linear machine learning models. We also explore the impact of feature encoding on model performance and interpretability, as well as methods to identify key protein sequence features influencing classification. The evaluation of our pipeline demonstrates that it can classify stoichiometry while revealing protein features that possibly influence VLP assembly. The data and code used in this work are publicly available at https://github.com/Shef-AIRE/StoicIML.


Uncovering What, Why and How: A Comprehensive Benchmark for Causation Understanding of Video Anomaly

arXiv.org Artificial Intelligence

Video anomaly understanding (VAU) aims to automatically comprehend unusual occurrences in videos, thereby enabling various applications such as traffic surveillance and industrial manufacturing. While existing VAU benchmarks primarily concentrate on anomaly detection and localization, our focus is on more practicality, prompting us to raise the following crucial questions: "what anomaly occurred?", "why did it happen?", and "how severe is this abnormal event?". In pursuit of these answers, we present a comprehensive benchmark for Causation Understanding of Video Anomaly (CUVA). Specifically, each instance of the proposed benchmark involves three sets of human annotations to indicate the "what", "why" and "how" of an anomaly, including 1) anomaly type, start and end times, and event descriptions, 2) natural language explanations for the cause of an anomaly, and 3) free text reflecting the effect of the abnormality. In addition, we also introduce MMEval, a novel evaluation metric designed to better align with human preferences for CUVA, facilitating the measurement of existing LLMs in comprehending the underlying cause and corresponding effect of video anomalies. Finally, we propose a novel prompt-based method that can serve as a baseline approach for the challenging CUVA. We conduct extensive experiments to show the superiority of our evaluation metric and the prompt-based approach. Our code and dataset are available at https://github.com/fesvhtr/CUVA.