Zhang, Honglei
Competitive Learning for Achieving Content-specific Filters in Video Coding for Machines
Zhang, Honglei, Ahonen, Jukka I., Le, Nam, Yang, Ruiying, Cricri, Francesco
This paper investigates the efficacy of jointly optimizing content-specific post-processing filters to adapt a human oriented video/image codec into a codec suitable for machine vision tasks. By observing that artifacts produced by video/image codecs are content-dependent, we propose a novel training strategy based on competitive learning principles. This strategy assigns training samples to filters dynamically, in a fuzzy manner, which further optimizes the winning filter on the given sample. Inspired by simulated annealing optimization techniques, we employ a softmax function with a temperature variable as the weight allocation function to mitigate the effects of random initialization. Our evaluation, conducted on a system utilizing multiple post-processing filters within a Versatile Video Coding (VVC) codec framework, demonstrates the superiority of content-specific filters trained with our proposed strategies, specifically, when images are processed in blocks. Using VVC reference software VTM 12.0 as the anchor, experiments on the OpenImages dataset show an improvement in the BD-rate reduction from -41.3% and -44.6% to -42.3% and -44.7% for object detection and instance segmentation tasks, respectively, compared to independently trained filters. The statistics of the filter usage align with our hypothesis and underscore the importance of jointly optimizing filters for both content and reconstruction quality. Our findings pave the way for further improving the performance of video/image codecs.
L$^2$C -- Learning to Learn to Compress
Zou, Nannan, Zhang, Honglei, Cricri, Francesco, Tavakoli, Hamed R., Lainema, Jani, Hannuksela, Miska, Aksu, Emre, Rahtu, Esa
In this paper we present an end-to-end meta-learned system for image compression. Traditional machine learning based approaches to image compression train one or more neural network for generalization performance. However, at inference time, the encoder or the latent tensor output by the encoder can be optimized for each test image. This optimization can be regarded as a form of adaptation or benevolent overfitting to the input content. In order to reduce the gap between training and inference conditions, we propose a new training paradigm for learned image compression, which is based on meta-learning. In a first phase, the neural networks are trained normally. In a second phase, the Model-Agnostic Meta-learning approach is adapted to the specific case of image compression, where the inner-loop performs latent tensor overfitting, and the outer loop updates both encoder and decoder neural networks based on the overfitting performance. Furthermore, after meta-learning, we propose to overfit and cluster the bias terms of the decoder on training image patches, so that at inference time the optimal content-specific bias terms can be selected at encoder-side. Finally, we propose a new probability model for lossless compression, which combines concepts from both multi-scale and super-resolution probability model approaches. We show the benefits of all our proposed ideas via carefully designed experiments.
The General Black-box Attack Method for Graph Neural Networks
Chang, Heng, Rong, Yu, Xu, Tingyang, Huang, Wenbing, Zhang, Honglei, Cui, Peng, Zhu, Wenwu, Huang, Junzhou
With the great success of Graph Neural Networks (GNNs) towards representation learning on graph-structure data, the robustness of GNNs against adversarial attack inevitably becomes a central problem in graph learning domain. Regardless of the fruitful progress, current works suffer from two main limitations: First, the attack method required to be developed case by case; Second, most of them are restricted to the white-box attack. This paper promotes current frameworks in a more general and flexible sense -- we demand only one single method to attack various kinds of GNNs and this attacker is black box driven. To this end, we begin by investigating the theoretical connections between different kinds of GNNs in a principled way and integrate different GNN models into a unified framework, dubbed as General Spectral Graph Convolution. As such, a generalized adversarial attacker is proposed towards two families of GNNs: Convolution-based model and sampling-based model. More interestingly, our attacker does not require any knowledge of the target classifiers used in GNNs. Extensive experimental results validate the effectiveness of our method on several benchmark datasets. Particularly by using our attack, even small graph perturbations like one-edge flip is able to consistently make a strong attack in performance to different GNN models.