Zhang, Fumin
SLABIM: A SLAM-BIM Coupled Dataset in HKUST Main Building
Huang, Haoming, Qiao, Zhijian, Yu, Zehuan, Liu, Chuhao, Shen, Shaojie, Zhang, Fumin, Yin, Huan
Existing indoor SLAM datasets primarily focus on robot sensing, often lacking building architectures. To address this gap, we design and construct the first dataset to couple the SLAM and BIM, named SLABIM. This dataset provides BIM and SLAM-oriented sensor data, both modeling a university building at HKUST. The as-designed BIM is decomposed and converted for ease of use. We employ a multi-sensor suite for multi-session data collection and mapping to obtain the as-built model. All the related data are timestamped and organized, enabling users to deploy and test effectively. Furthermore, we deploy advanced methods and report the experimental results on three tasks: registration, localization and semantic mapping, demonstrating the effectiveness and practicality of SLABIM. We make our dataset open-source at https://github.com/HKUST-Aerial-Robotics/SLABIM.
A Hybrid Controller Design for Human-Assistive Piloting of an Underactuated Blimp
Meng, Wugang, Wu, Tianfu, Tao, Qiuyang, Zhang, Fumin
Abstract--This paper introduces a novel solution to the manual control challenge for indoor blimps. The problem's complexity arises from the conflicting demands of executing human commands while maintaining stability through automatic control for underactuated robots. To tackle this challenge, we introduced an assisted piloting hybrid controller with a preemptive mechanism, that seamlessly switches between executing human commands and activating automatic stabilization control. Our algorithm ensures that the automatic stabilization controller operates within the time delay between human observation and perception, providing assistance to the driver in a way that remains imperceptible. Unmanned aerial vehicles (UAVs) have become increasingly popular in various fields including military, agriculture, and significantly impact human perceptions of event causation transportation.
NuRF: Nudging the Particle Filter in Radiance Fields for Robot Visual Localization
Meng, Wugang, Wu, Tianfu, Yin, Huan, Zhang, Fumin
Can we localize a robot in radiance fields only using monocular vision? This study presents NuRF, a nudged particle filter framework for 6-DoF robot visual localization in radiance fields. NuRF sets anchors in SE(3) to leverage visual place recognition, which provides image comparisons to guide the sampling process. This guidance could improve the convergence and robustness of particle filters for robot localization. Additionally, an adaptive scheme is designed to enhance the performance of NuRF, thus enabling both global visual localization and local pose tracking. Real-world experiments are conducted with comprehensive tests to demonstrate the effectiveness of NuRF. The results showcase the advantages of NuRF in terms of accuracy and efficiency, including comparisons with alternative approaches. Furthermore, we report our findings for future studies and advancements in robot navigation in radiance fields.
Speak the Same Language: Global LiDAR Registration on BIM Using Pose Hough Transform
Qiao, Zhijian, Huang, Haoming, Liu, Chuhao, Shen, Shaojie, Zhang, Fumin, Yin, Huan
The construction and robotic sensing data originate from disparate sources and are associated with distinct frames of reference. The primary objective of this study is to align LiDAR point clouds with building information modeling (BIM) using a global point cloud registration approach, aimed at establishing a shared understanding between the two modalities, i.e., ``speak the same language''. To achieve this, we design a cross-modality registration method, spanning from front end the back end. At the front end, we extract descriptors by identifying walls and capturing the intersected corners. Subsequently, for the back-end pose estimation, we employ the Hough transform for pose estimation and estimate multiple pose candidates. The final pose is verified by wall-pixel correlation. To evaluate the effectiveness of our method, we conducted real-world multi-session experiments in a large-scale university building, involving two different types of LiDAR sensors. We also report our findings and plan to make our collected dataset open-sourced.
OceanPlan: Hierarchical Planning and Replanning for Natural Language AUV Piloting in Large-scale Unexplored Ocean Environments
Yang, Ruochu, Zhang, Fumin, Hou, Mengxue
We develop a hierarchical LLM-task-motion planning and replanning framework to efficiently ground an abstracted human command into tangible Autonomous Underwater Vehicle (AUV) control through enhanced representations of the world. We also incorporate a holistic replanner to provide real-world feedback with all planners for robust AUV operation. While there has been extensive research in bridging the gap between LLMs and robotic missions, they are unable to guarantee success of AUV applications in the vast and unknown ocean environment. To tackle specific challenges in marine robotics, we design a hierarchical planner to compose executable motion plans, which achieves planning efficiency and solution quality by decomposing long-horizon missions into sub-tasks. At the same time, real-time data stream is obtained by a replanner to address environmental uncertainties during plan execution. Experiments validate that our proposed framework delivers successful AUV performance of long-duration missions through natural language piloting.
Real-time Autonomous Glider Navigation Software
Yang, Ruochu, Hou, Mengxue, Lembke, Chad, Edwards, Catherine, Zhang, Fumin
Underwater gliders are widely utilized for ocean sampling, surveillance, and other various oceanic applications. In the context of complex ocean environments, gliders may yield poor navigation performance due to strong ocean currents, thus requiring substantial human effort during the manual piloting process. To enhance navigation accuracy, we developed a real-time autonomous glider navigation software, named GENIoS Python, which generates waypoints based on flow predictions to assist human piloting. The software is designed to closely check glider status, provide customizable experiment settings, utilize lightweight computing resources, offer stably communicate with dockservers, robustly run for extended operation time, and quantitatively compare flow estimates, which add to its value as an autonomous tool for underwater glider navigation.
Trust-Preserved Human-Robot Shared Autonomy enabled by Bayesian Relational Event Modeling
Li, Yingke, Zhang, Fumin
Shared autonomy functions as a flexible framework that empowers robots to operate across a spectrum of autonomy levels, allowing for efficient task execution with minimal human oversight. However, humans might be intimidated by the autonomous decision-making capabilities of robots due to perceived risks and a lack of trust. This paper proposed a trust-preserved shared autonomy strategy that grants robots to seamlessly adjust their autonomy level, striving to optimize team performance and enhance their acceptance among human collaborators. By enhancing the Relational Event Modeling framework with Bayesian learning techniques, this paper enables dynamic inference of human trust based solely on time-stamped relational events within human-robot teams. Adopting a longitudinal perspective on trust development and calibration in human-robot teams, the proposed shared autonomy strategy warrants robots to preserve human trust by not only passively adapting to it but also actively participating in trust repair when violations occur. We validate the effectiveness of the proposed approach through a user study on human-robot collaborative search and rescue scenarios. The objective and subjective evaluations demonstrate its merits over teleoperation on both task execution and user acceptability.
OceanChat: Piloting Autonomous Underwater Vehicles in Natural Language
Yang, Ruochu, Hou, Mengxue, Wang, Junkai, Zhang, Fumin
In the trending research of fusing Large Language Models (LLMs) and robotics, we aim to pave the way for innovative development of AI systems that can enable Autonomous Underwater Vehicles (AUVs) to seamlessly interact with humans in an intuitive manner. We propose OceanChat, a system that leverages a closed-loop LLM-guided task and motion planning framework to tackle AUV missions in the wild. LLMs translate an abstract human command into a high-level goal, while a task planner further grounds the goal into a task sequence with logical constraints. To assist the AUV with understanding the task sequence, we utilize a motion planner to incorporate real-time Lagrangian data streams received by the AUV, thus mapping the task sequence into an executable motion plan. Considering the highly dynamic and partially known nature of the underwater environment, an event-triggered replanning scheme is developed to enhance the system's robustness towards uncertainty. We also build a simulation platform HoloEco that generates photo-realistic simulation for a wide range of AUV applications. Experimental evaluation verifies that the proposed system can achieve improved performance in terms of both success rate and computation time. Project website: \url{https://sites.google.com/view/oceanchat}
Anomaly Detection of Underwater Gliders Verified by Deployment Data
Yang, Ruochu, Hou, Mengxue, Lembke, Chad, Edwards, Catherine, Zhang, Fumin
This paper utilizes an anomaly detection algorithm to check if underwater gliders are operating normally in the unknown ocean environment. Glider pilots can be warned of the detected glider anomaly in real time, thus taking over the glider appropriately and avoiding further damage to the glider. The adopted algorithm is validated by two valuable sets of data in real glider deployments, the University of South Florida (USF) glider Stella and the Skidaway Institute of Oceanography (SkIO) glider Angus.
The Rational Selection of Goal Operations and the Integration ofSearch Strategies with Goal-Driven Autonomy
Kondrakunta, Sravya, Gogineni, Venkatsampath Raja, Cox, Michael T., Coleman, Demetris, Tan, Xiaobao, Lin, Tony, Hou, Mengxue, Zhang, Fumin, McQuarrie, Frank, Edwards, Catherine R.
Intelligent physical systems as embodied cognitive systems must perform high-level reasoning while concurrently managing an underlying control architecture. The link between cognition and control must manage the problem of converting continuous values from the real world to symbolic representations (and back). To generate effective behaviors, reasoning must include a capacity to replan, acquire and update new information, detect and respond to anomalies, and perform various operations on system goals. But, these processes are not independent and need further exploration. This paper examines an agent's choices when multiple goal operations co-occur and interact, and it establishes a method of choosing between them. We demonstrate the benefits and discuss the trade offs involved with this and show positive results in a dynamic marine search task.