Goto

Collaborating Authors

 Zhang, Di


DiffMoE: Dynamic Token Selection for Scalable Diffusion Transformers

arXiv.org Artificial Intelligence

Diffusion models have demonstrated remarkable success in various image generation tasks, but their performance is often limited by the uniform processing of inputs across varying conditions and noise levels. To address this limitation, we propose a novel approach that leverages the inherent heterogeneity of the diffusion process. Our method, DiffMoE, introduces a batch-level global token pool that enables experts to access global token distributions during training, promoting specialized expert behavior. To unleash the full potential of the diffusion process, DiffMoE incorporates a capacity predictor that dynamically allocates computational resources based on noise levels and sample complexity. Through comprehensive evaluation, DiffMoE achieves state-of-the-art performance among diffusion models on ImageNet benchmark, substantially outperforming both dense architectures with 3x activated parameters and existing MoE approaches while maintaining 1x activated parameters. The effectiveness of our approach extends beyond class-conditional generation to more challenging tasks such as text-to-image generation, demonstrating its broad applicability across different diffusion model applications. Project Page: https://shiml20.github.io/DiffMoE/


ExGes: Expressive Human Motion Retrieval and Modulation for Audio-Driven Gesture Synthesis

arXiv.org Artificial Intelligence

Audio-driven human gesture synthesis is a crucial task with broad applications in virtual avatars, human-computer interaction, and creative content generation. Despite notable progress, existing methods often produce gestures that are coarse, lack expressiveness, and fail to fully align with audio semantics. To address these challenges, we propose ExGes, a novel retrieval-enhanced diffusion framework with three key designs: (1) a Motion Base Construction, which builds a gesture library using training dataset; (2) a Motion Retrieval Module, employing constrative learning and momentum distillation for fine-grained reference poses retreiving; and (3) a Precision Control Module, integrating partial masking and stochastic masking to enable flexible and fine-grained control. Experimental evaluations on BEAT2 demonstrate that ExGes reduces Fr\'echet Gesture Distance by 6.2\% and improves motion diversity by 5.3\% over EMAGE, with user studies revealing a 71.3\% preference for its naturalness and semantic relevance. Code will be released upon acceptance.


RectifiedHR: Enable Efficient High-Resolution Image Generation via Energy Rectification

arXiv.org Artificial Intelligence

Diffusion models have achieved remarkable advances in various image generation tasks. However, their performance notably declines when generating images at resolutions higher than those used during the training period. Despite the existence of numerous methods for producing high-resolution images, they either suffer from inefficiency or are hindered by complex operations. In this paper, we propose RectifiedHR, an straightforward and efficient solution for training-free high-resolution image generation. Specifically, we introduce the noise refresh strategy, which theoretically only requires a few lines of code to unlock the model's high-resolution generation ability and improve efficiency. Additionally, we first observe the phenomenon of energy decay that may cause image blurriness during the high-resolution image generation process. To address this issue, we introduce average latent energy analysis and discover that an improved classifier-free guidance hyperparameter can significantly enhance generation performance. Our method is entirely training-free and boasts a simple implementation logic and efficient performance. Through extensive comparisons with numerous baseline methods, our RectifiedHR demonstrates superior effectiveness and efficiency.


Cafe-Talk: Generating 3D Talking Face Animation with Multimodal Coarse- and Fine-grained Control

arXiv.org Artificial Intelligence

Speech-driven 3D talking face method should offer both accurate lip synchronization and controllable expressions. Previous methods solely adopt discrete emotion labels to globally control expressions throughout sequences while limiting flexible fine-grained facial control within the spatiotemporal domain. We propose a diffusion-transformer-based 3D talking face generation model, Cafe-Talk, which simultaneously incorporates coarse- and fine-grained multimodal control conditions. Nevertheless, the entanglement of multiple conditions challenges achieving satisfying performance. To disentangle speech audio and fine-grained conditions, we employ a two-stage training pipeline. Specifically, Cafe-Talk is initially trained using only speech audio and coarse-grained conditions. Then, a proposed fine-grained control adapter gradually adds fine-grained instructions represented by action units (AUs), preventing unfavorable speech-lip synchronization. To disentangle coarse- and fine-grained conditions, we design a swap-label training mechanism, which enables the dominance of the fine-grained conditions. We also devise a mask-based CFG technique to regulate the occurrence and intensity of fine-grained control. In addition, a text-based detector is introduced with text-AU alignment to enable natural language user input and further support multimodal control. Extensive experimental results prove that Cafe-Talk achieves state-of-the-art lip synchronization and expressiveness performance and receives wide acceptance in fine-grained control in user studies. Project page: https://harryxd2018.github.io/cafe-talk/


HAIC: Improving Human Action Understanding and Generation with Better Captions for Multi-modal Large Language Models

arXiv.org Artificial Intelligence

Recent Multi-modal Large Language Models (MLLMs) have made great progress in video understanding. However, their performance on videos involving human actions is still limited by the lack of high-quality data. To address this, we introduce a two-stage data annotation pipeline. First, we design strategies to accumulate videos featuring clear human actions from the Internet. Second, videos are annotated in a standardized caption format that uses human attributes to distinguish individuals and chronologically details their actions and interactions. Through this pipeline, we curate two datasets, namely HAICTrain and HAICBench. \textbf{HAICTrain} comprises 126K video-caption pairs generated by Gemini-Pro and verified for training purposes. Meanwhile, \textbf{HAICBench} includes 500 manually annotated video-caption pairs and 1,400 QA pairs, for a comprehensive evaluation of human action understanding. Experimental results demonstrate that training with HAICTrain not only significantly enhances human understanding abilities across 4 benchmarks, but can also improve text-to-video generation results. Both the HAICTrain and HAICBench are released at https://huggingface.co/datasets/KuaishouHAIC/HAIC.


Be a Multitude to Itself: A Prompt Evolution Framework for Red Teaming

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have gained increasing attention for their remarkable capacity, alongside concerns about safety arising from their potential to produce harmful content. Red teaming aims to find prompts that could elicit harmful responses from LLMs, and is essential to discover and mitigate safety risks before real-world deployment. However, manual red teaming is both time-consuming and expensive, rendering it unscalable. In this paper, we propose RTPE, a scalable evolution framework to evolve red teaming prompts across both breadth and depth dimensions, facilitating the automatic generation of numerous high-quality and diverse red teaming prompts. Specifically, in-breadth evolving employs a novel enhanced in-context learning method to create a multitude of quality prompts, whereas in-depth evolving applies customized transformation operations to enhance both content and form of prompts, thereby increasing diversity. Extensive experiments demonstrate that RTPE surpasses existing representative automatic red teaming methods on both attack success rate and diversity. In addition, based on 4,800 red teaming prompts created by RTPE, we further provide a systematic analysis of 8 representative LLMs across 8 sensitive topics.


SPPD: Self-training with Process Preference Learning Using Dynamic Value Margin

arXiv.org Artificial Intelligence

Recently, enhancing the numerical and logical reasoning capability of Large Language Models (LLMs) has emerged as a research hotspot. Existing methods face several limitations: inference-phase techniques (e.g., Chain of Thoughts) rely on prompt selection and the pretrained knowledge; sentence-level Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) struggle with step-wise mathematical correctness and depend on stronger models distillation or human annotations; while Reinforcement Learning (RL) approaches incur high GPU memory costs and unstable training. To address these, we propose \textbf{S}elf-training framework integrating \textbf{P}rocess \textbf{P}reference learning using \textbf{D}ynamic value margin (SPPD). SPPD leverages a process-based Markov Decision Process (MDP) and Bellman optimality equation to derive \textbf{dynamic value margin} on step-level preference optimization, which employs tree-based self-sampling on model responses \textbf{without any distillation} from other models. Furthermore, we theoretically prove that SPPD is \textbf{equivalent to on-policy policy gradient methods} under reward constraints. Experiments on 7B-scale models demonstrate superior performance across in-domain and out-domain mathematical benchmarks. We open-source our code at \href{https://anonymous.4open.science/r/SSDPO-D-DCDD}{https://anonymous.4open.science/r/SPPD-DCDD}.


FlexDuo: A Pluggable System for Enabling Full-Duplex Capabilities in Speech Dialogue Systems

arXiv.org Artificial Intelligence

Full-Duplex Speech Dialogue Systems (Full-Duplex SDS) have significantly enhanced the naturalness of human-machine interaction by enabling real-time bidirectional communication. However, existing approaches face challenges such as difficulties in independent module optimization and contextual noise interference due to highly coupled architectural designs and oversimplified binary state modeling. This paper proposes FlexDuo, a flexible full-duplex control module that decouples duplex control from spoken dialogue systems through a plug-and-play architectural design. Furthermore, inspired by human information-filtering mechanisms in conversations, we introduce an explicit Idle state. On one hand, the Idle state filters redundant noise and irrelevant audio to enhance dialogue quality. On the other hand, it establishes a semantic integrity-based buffering mechanism, reducing the risk of mutual interruptions while ensuring accurate response transitions. Experimental results on the Fisher corpus demonstrate that FlexDuo reduces the false interruption rate by 24.9% and improves response accuracy by 7.6% compared to integrated full-duplex dialogue system baselines. It also outperforms voice activity detection (VAD) controlled baseline systems in both Chinese and English dialogue quality. The proposed modular architecture and state-based dialogue model provide a novel technical pathway for building flexible and efficient duplex dialogue systems.


VidCapBench: A Comprehensive Benchmark of Video Captioning for Controllable Text-to-Video Generation

arXiv.org Artificial Intelligence

The training of controllable text-to-video (T2V) models relies heavily on the alignment between videos and captions, yet little existing research connects video caption evaluation with T2V generation assessment. This paper introduces VidCapBench, a video caption evaluation scheme specifically designed for T2V generation, agnostic to any particular caption format. VidCapBench employs a data annotation pipeline, combining expert model labeling and human refinement, to associate each collected video with key information spanning video aesthetics, content, motion, and physical laws. VidCapBench then partitions these key information attributes into automatically assessable and manually assessable subsets, catering to both the rapid evaluation needs of agile development and the accuracy requirements of thorough validation. By evaluating numerous state-of-the-art captioning models, we demonstrate the superior stability and comprehensiveness of VidCapBench compared to existing video captioning evaluation approaches. Verification with off-the-shelf T2V models reveals a significant positive correlation between scores on VidCapBench and the T2V quality evaluation metrics, indicating that VidCapBench can provide valuable guidance for training T2V models. The project is available at https://github.com/VidCapBench/VidCapBench.


Finedeep: Mitigating Sparse Activation in Dense LLMs via Multi-Layer Fine-Grained Experts

arXiv.org Artificial Intelligence

Large language models have demonstrated exceptional performance across a wide range of tasks. However, dense models usually suffer from sparse activation, where many activation values tend towards zero (i.e., being inactivated). We argue that this could restrict the efficient exploration of model representation space. To mitigate this issue, we propose Finedeep, a deep-layered fine-grained expert architecture for dense models. Our framework partitions the feed-forward neural network layers of traditional dense models into small experts, arranges them across multiple sub-layers. A novel routing mechanism is proposed to determine each expert's contribution. We conduct extensive experiments across various model sizes, demonstrating that our approach significantly outperforms traditional dense architectures in terms of perplexity and benchmark performance while maintaining a comparable number of parameters and floating-point operations. Moreover, we find that Finedeep achieves optimal results when balancing depth and width, specifically by adjusting the number of expert sub-layers and the number of experts per sub-layer. Empirical results confirm that Finedeep effectively alleviates sparse activation and efficiently utilizes representation capacity in dense models.