Zhang, Chunyun
Dynamic Prompt Allocation and Tuning for Continual Test-Time Adaptation
Cui, Chaoran, Zhen, Yongrui, Gong, Shuai, Zhang, Chunyun, Liu, Hui, Yin, Yilong
Continual test-time adaptation (CTTA) has recently emerged to adapt a pre-trained source model to continuously evolving target distributions, which accommodates the dynamic nature of real-world environments. To mitigate the risk of catastrophic forgetting in CTTA, existing methods typically incorporate explicit regularization terms to constrain the variation of model parameters. However, they cannot fundamentally resolve catastrophic forgetting because they rely on a single shared model to adapt across all target domains, which inevitably leads to severe inter-domain interference. In this paper, we introduce learnable domain-specific prompts that guide the model to adapt to corresponding target domains, thereby partially disentangling the parameter space of different domains. In the absence of domain identity for target samples, we propose a novel dynamic Prompt AllocatIon aNd Tuning (PAINT) method, which utilizes a query mechanism to dynamically determine whether the current samples come from a known domain or an unexplored one. For known domains, the corresponding domain-specific prompt is directly selected, while for previously unseen domains, a new prompt is allocated. Prompt tuning is subsequently performed using mutual information maximization along with structural regularization. Extensive experiments on three benchmark datasets demonstrate the effectiveness of our PAINT method for CTTA. We have released our code at https://github.com/Cadezzyr/PAINT.
Federated Domain Generalization via Prompt Learning and Aggregation
Gong, Shuai, Cui, Chaoran, Zhang, Chunyun, Wang, Wenna, Nie, Xiushan, Zhu, Lei
Federated domain generalization (FedDG) aims to improve the global model generalization in unseen domains by addressing data heterogeneity under privacy-preserving constraints. A common strategy in existing FedDG studies involves sharing domain-specific knowledge among clients, such as spectrum information, class prototypes, and data styles. However, this knowledge is extracted directly from local client samples, and sharing such sensitive information poses a potential risk of data leakage, which might not fully meet the requirements of FedDG. In this paper, we introduce prompt learning to adapt pre-trained vision-language models (VLMs) in the FedDG scenario, and leverage locally learned prompts as a more secure bridge to facilitate knowledge transfer among clients. Specifically, we propose a novel FedDG framework through Prompt Learning and AggregatioN (PLAN), which comprises two training stages to collaboratively generate local prompts and global prompts at each federated round. First, each client performs both text and visual prompt learning using their own data, with local prompts indirectly synchronized by regarding the global prompts as a common reference. Second, all domain-specific local prompts are exchanged among clients and selectively aggregated into the global prompts using lightweight attention-based aggregators. The global prompts are finally applied to adapt VLMs to unseen target domains. As our PLAN framework requires training only a limited number of prompts and lightweight aggregators, it offers notable advantages in computational and communication efficiency for FedDG. Extensive experiments demonstrate the superior generalization ability of PLAN across four benchmark datasets.
Do We Fully Understand Students' Knowledge States? Identifying and Mitigating Answer Bias in Knowledge Tracing
Cui, Chaoran, Ma, Hebo, Zhang, Chen, Zhang, Chunyun, Yao, Yumo, Chen, Meng, Ma, Yuling
Knowledge tracing (KT) aims to monitor students' evolving knowledge states through their learning interactions with concept-related questions, and can be indirectly evaluated by predicting how students will perform on future questions. In this paper, we observe that there is a common phenomenon of answer bias, i.e., a highly unbalanced distribution of correct and incorrect answers for each question. Existing models tend to memorize the answer bias as a shortcut for achieving high prediction performance in KT, thereby failing to fully understand students' knowledge states. To address this issue, we approach the KT task from a causality perspective. A causal graph of KT is first established, from which we identify that the impact of answer bias lies in the direct causal effect of questions on students' responses. A novel COunterfactual REasoning (CORE) framework for KT is further proposed, which separately captures the total causal effect and direct causal effect during training, and mitigates answer bias by subtracting the latter from the former in testing. The CORE framework is applicable to various existing KT models, and we implement it based on the prevailing DKT, DKVMN, and AKT models, respectively. Extensive experiments on three benchmark datasets demonstrate the effectiveness of CORE in making the debiased inference for KT. We have released our code at https://github.com/lucky7-code/CORE.
DGEKT: A Dual Graph Ensemble Learning Method for Knowledge Tracing
Cui, Chaoran, Yao, Yumo, Zhang, Chunyun, Ma, Hebo, Ma, Yuling, Ren, Zhaochun, Zhang, Chen, Ko, James
Knowledge tracing aims to trace students' evolving knowledge states by predicting their future performance on concept-related exercises. Recently, some graph-based models have been developed to incorporate the relationships between exercises to improve knowledge tracing, but only a single type of relationship information is generally explored. In this paper, we present a novel Dual Graph Ensemble learning method for Knowledge Tracing (DGEKT), which establishes a dual graph structure of students' learning interactions to capture the heterogeneous exercise-concept associations and interaction transitions by hypergraph modeling and directed graph modeling, respectively. To ensemble the dual graph models, we introduce the technique of online knowledge distillation, due to the fact that although the knowledge tracing model is expected to predict students' responses to the exercises related to different concepts, it is optimized merely with respect to the prediction accuracy on a single exercise at each step. With online knowledge distillation, the dual graph models are adaptively combined to form a stronger teacher model, which in turn provides its predictions on all exercises as extra supervision for better modeling ability. In the experiments, we compare DGEKT against eight knowledge tracing baselines on three benchmark datasets, and the results demonstrate that DGEKT achieves state-of-the-art performance.