Zhang, Chenrui
Robotic Sim-to-Real Transfer for Long-Horizon Pick-and-Place Tasks in the Robotic Sim2Real Competition
Yang, Ming, Cao, Hongyu, Zhao, Lixuan, Zhang, Chenrui, Chen, Yaran
This paper presents a fully autonomous robotic system that performs sim-to-real transfer in complex long-horizon tasks involving navigation, recognition, grasping, and stacking in an environment with multiple obstacles. The key feature of the system is the ability to overcome typical sensing and actuation discrepancies during sim-to-real transfer and to achieve consistent performance without any algorithmic modifications. To accomplish this, a lightweight noise-resistant visual perception system and a nonlinearity-robust servo system are adopted. We conduct a series of tests in both simulated and real-world environments. The visual perception system achieves the speed of 11 ms per frame due to its lightweight nature, and the servo system achieves sub-centimeter accuracy with the proposed controller. Both exhibit high consistency during sim-to-real transfer. Benefiting from these, our robotic system took first place in the mineral searching task of the Robotic Sim2Real Challenge hosted at ICRA 2024.
PREFER: Prompt Ensemble Learning via Feedback-Reflect-Refine
Zhang, Chenrui, Liu, Lin, Wang, Jinpeng, Wang, Chuyuan, Sun, Xiao, Wang, Hongyu, Cai, Mingchen
As an effective tool for eliciting the power of Large Language Models (LLMs), prompting has recently demonstrated unprecedented abilities across a variety of complex tasks. To further improve the performance, prompt ensemble has attracted substantial interest for tackling the hallucination and instability of LLMs. However, existing methods usually adopt a two-stage paradigm, which requires a pre-prepared set of prompts with substantial manual effort, and is unable to perform directed optimization for different weak learners. In this paper, we propose a simple, universal, and automatic method named PREFER (Pompt Ensemble learning via Feedback-Reflect-Refine) to address the stated limitations. Specifically, given the fact that weak learners are supposed to focus on hard examples during boosting, PREFER builds a feedback mechanism for reflecting on the inadequacies of existing weak learners. Based on this, the LLM is required to automatically synthesize new prompts for iterative refinement. Moreover, to enhance stability of the prompt effect evaluation, we propose a novel prompt bagging method involving forward and backward thinking, which is superior to majority voting and is beneficial for both feedback and weight calculation in boosting. Extensive experiments demonstrate that our PREFER achieves state-of-the-art performance in multiple types of tasks by a significant margin. We have made our code publicly available.
Enhancing Personalized Ranking With Differentiable Group AUC Optimization
Sun, Xiao, Zhang, Bo, Zhang, Chenrui, Ren, Han, Cai, Mingchen
AUC is a common metric for evaluating the performance of a classifier. However, most classifiers are trained with cross entropy, and it does not optimize the AUC metric directly, which leaves a gap between the training and evaluation stage. In this paper, we propose the PDAOM loss, a Personalized and Differentiable AUC Optimization method with Maximum violation, which can be directly applied when training a binary classifier and optimized with gradient-based methods. Specifically, we construct the pairwise exponential loss with difficult pair of positive and negative samples within sub-batches grouped by user ID, aiming to guide the classifier to pay attention to the relation between hard-distinguished pairs of opposite samples from the perspective of independent users. Compared to the origin form of pairwise exponential loss, the proposed PDAOM loss not only improves the AUC and GAUC metrics in the offline evaluation, but also reduces the computation complexity of the training objective. Furthermore, online evaluation of the PDAOM loss on the 'Guess What You Like' feed recommendation application in Meituan manifests 1.40% increase in click count and 0.65% increase in order count compared to the baseline model, which is a significant improvement in this well-developed online life service recommendation system.
TGG: Transferable Graph Generation for Zero-shot and Few-shot Learning
Zhang, Chenrui, Lyu, Xiaoqing, Tang, Zhi
Zero-shot and few-shot learning aim to improve generalization to unseen concepts, which are promising in many realistic scenarios. Due to the lack of data in unseen domain, relation modeling between seen and unseen domains is vital for knowledge transfer in these tasks. Most existing methods capture seen-unseen relation implicitly via semantic embedding or feature generation, resulting in inadequate use of relation and some issues remain (e.g. domain shift). To tackle these challenges, we propose a Transferable Graph Generation (TGG) approach, in which the relation is modeled and utilized explicitly via graph generation. Specifically, our proposed TGG contains two main components: (1) Graph generation for relation modeling. An attention-based aggregate network and a relation kernel are proposed, which generate instance-level graph based on a class-level prototype graph and visual features. Proximity information aggregating is guided by a multi-head graph attention mechanism, where seen and unseen features synthesized by GAN are revised as node embeddings. The relation kernel further generates edges with GCN and graph kernel method, to capture instance-level topological structure while tackling data imbalance and noise. (2) Relation propagation for relation utilization. A dual relation propagation approach is proposed, where relations captured by the generated graph are separately propagated from the seen and unseen subgraphs. The two propagations learn from each other in a dual learning fashion, which performs as an adaptation way for mitigating domain shift. All components are jointly optimized with a meta-learning strategy, and our TGG acts as an end-to-end framework unifying conventional zero-shot, generalized zero-shot and few-shot learning. Extensive experiments demonstrate that it consistently surpasses existing methods of the above three fields by a significant margin.