Zevallos, Rodolfo
The Role of Handling Attributive Nouns in Improving Chinese-To-English Machine Translation
Wang, Lisa, Meyers, Adam, Ortega, John E., Zevallos, Rodolfo
Translating between languages with drastically different grammatical conventions poses challenges, not just for human interpreters but also for machine translation systems. In this work, we specifically target the translation challenges posed by attributive nouns in Chinese, which frequently cause ambiguities in English translation. By manually inserting the omitted particle X ('DE'). In news article titles from the Penn Chinese Discourse Treebank, we developed a targeted dataset to fine-tune Hugging Face Chinese to English translation models, specifically improving how this critical function word is handled. This focused approach not only complements the broader strategies suggested by previous studies but also offers a practical enhancement by specifically addressing a common error type in Chinese-English translation.
The First Multilingual Model For The Detection of Suicide Texts
Zevallos, Rodolfo, Schoene, Annika, Ortega, John E.
Suicidal ideation is a serious health problem affecting millions of people worldwide. Social networks provide information about these mental health problems through users' emotional expressions. We propose a multilingual model leveraging transformer architectures like mBERT, XML-R, and mT5 to detect suicidal text across posts in six languages - Spanish, English, German, Catalan, Portuguese and Italian. A Spanish suicide ideation tweet dataset was translated into five other languages using SeamlessM4T. Each model was fine-tuned on this multilingual data and evaluated across classification metrics. Results showed mT5 achieving the best performance overall with F1 scores above 85%, highlighting capabilities for cross-lingual transfer learning. The English and Spanish translations also displayed high quality based on perplexity. Our exploration underscores the importance of considering linguistic diversity in developing automated multilingual tools to identify suicidal risk. Limitations exist around semantic fidelity in translations and ethical implications which provide guidance for future human-in-the-loop evaluations.
Findings of the IWSLT 2024 Evaluation Campaign
Ahmad, Ibrahim Said, Anastasopoulos, Antonios, Bojar, Ondřej, Borg, Claudia, Carpuat, Marine, Cattoni, Roldano, Cettolo, Mauro, Chen, William, Dong, Qianqian, Federico, Marcello, Haddow, Barry, Javorský, Dávid, Krubiński, Mateusz, Lam, Tsz Kin, Ma, Xutai, Mathur, Prashant, Matusov, Evgeny, Maurya, Chandresh, McCrae, John, Murray, Kenton, Nakamura, Satoshi, Negri, Matteo, Niehues, Jan, Niu, Xing, Ojha, Atul Kr., Ortega, John, Papi, Sara, Polák, Peter, Pospíšil, Adam, Pecina, Pavel, Salesky, Elizabeth, Sethiya, Nivedita, Sarkar, Balaram, Shi, Jiatong, Sikasote, Claytone, Sperber, Matthias, Stüker, Sebastian, Sudoh, Katsuhito, Thompson, Brian, Turchi, Marco, Waibel, Alex, Watanabe, Shinji, Wilken, Patrick, Zemánek, Petr, Zevallos, Rodolfo
This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 18 teams whose submissions are documented in 26 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Evaluating Self-Supervised Speech Representations for Indigenous American Languages
Chen, Chih-Chen, Chen, William, Zevallos, Rodolfo, Ortega, John E.
The application of self-supervision to speech representation learning has garnered significant interest in recent years, due to its scalability to large amounts of unlabeled data. However, much progress, both in terms of pre-training and downstream evaluation, has remained concentrated in monolingual models that only consider English. Few models consider other languages, and even fewer consider indigenous ones. In our submission to the New Language Track of the ASRU 2023 ML-SUPERB Challenge, we present an ASR corpus for Quechua, an indigenous South American Language. We benchmark the efficacy of large SSL models on Quechua, along with 6 other indigenous languages such as Guarani and Bribri, on low-resource ASR. Our results show surprisingly strong performance by state-of-the-art SSL models, showing the potential generalizability of large-scale models to real-world data.
Data Augmentation for Low-Resource Quechua ASR Improvement
Zevallos, Rodolfo, Bel, Nuria, Cámbara, Guillermo, Farrús, Mireia, Luque, Jordi
Automatic Speech Recognition (ASR) is a key element in new services that helps users to interact with an automated system. Deep learning methods have made it possible to deploy systems with word error rates below 5% for ASR of English. However, the use of these methods is only available for languages with hundreds or thousands of hours of audio and their corresponding transcriptions. For the so-called low-resource languages to speed up the availability of resources that can improve the performance of their ASR systems, methods of creating new resources on the basis of existing ones are being investigated. In this paper we describe our data augmentation approach to improve the results of ASR models for low-resource and agglutinative languages. We carry out experiments developing an ASR for Quechua using the wav2letter++ model. We reduced WER by 8.73% through our approach to the base model. The resulting ASR model obtained 22.75% WER and was trained with 99 hours of original resources and 99 hours of synthetic data obtained with a combination of text augmentation and synthetic speech generati