Zeng, Yirong
iTool: Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning
Zeng, Yirong, Ding, Xiao, Wang, Yuxian, Liu, Weiwen, Ning, Wu, Hou, Yutai, Huang, Xu, Qin, Bing, Liu, Ting
Augmenting large language models (LLMs) with external tools is known as a promising approach to enhancing their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve it. Nevertheless, our investigation reveals that (1) training gains significantly decay as synthetic data increases. The model struggles to benefit from more synthetic data due to potential data diversity issues, resulting in poor performance in complex scenarios. Moreover, we find that (2) this challenge primarily manifests as minor discrepancies between the model's output and the ground truth response (termed as deficiency), such as errors in parameter values that require complex reasoning from the context to resolve. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate these challenges. This strategy involves: (1) enhancing the diversity of synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively identifying deficiency-related data, constructing fine-grained preference pairs to pinpoint deficiencies, and then applying preference optimization to optimize these deficiencies. Our experiments show that models trained using our method achieve about 3\% better performance than same-size models, outperforming larger open-source and closed-source models.
RU22Fact: Optimizing Evidence for Multilingual Explainable Fact-Checking on Russia-Ukraine Conflict
Zeng, Yirong, Ding, Xiao, Zhao, Yi, Li, Xiangyu, Zhang, Jie, Yao, Chao, Liu, Ting, Qin, Bing
Fact-checking is the task of verifying the factuality of a given claim by examining the available evidence. High-quality evidence plays a vital role in enhancing fact-checking systems and facilitating the generation of explanations that are understandable to humans. However, the provision of both sufficient and relevant evidence for explainable fact-checking systems poses a challenge. To tackle this challenge, we propose a method based on a Large Language Model to automatically retrieve and summarize evidence from the Web. Furthermore, we construct RU22Fact, a novel multilingual explainable fact-checking dataset on the Russia-Ukraine conflict in 2022 of 16K samples, each containing real-world claims, optimized evidence, and referenced explanation. To establish a baseline for our dataset, we also develop an end-to-end explainable fact-checking system to verify claims and generate explanations. Experimental results demonstrate the prospect of optimized evidence in increasing fact-checking performance and also indicate the possibility of further progress in the end-to-end claim verification and explanation generation tasks.