Goto

Collaborating Authors

 Zeng, Yifeng


Active Legibility in Multiagent Reinforcement Learning

arXiv.org Artificial Intelligence

A multiagent sequential decision problem has been seen in many critical applications including urban transportation, autonomous driving cars, military operations, etc. Its widely known solution, namely multiagent reinforcement learning, has evolved tremendously in recent years. Among them, the solution paradigm of modeling other agents attracts our interest, which is different from traditional value decomposition or communication mechanisms. It enables agents to understand and anticipate others' behaviors and facilitates their collaboration. Inspired by recent research on the legibility that allows agents to reveal their intentions through their behavior, we propose a multiagent active legibility framework to improve their performance. The legibility-oriented framework allows agents to conduct legible actions so as to help others optimise their behaviors. In addition, we design a series of problem domains that emulate a common scenario and best characterize the legibility in multiagent reinforcement learning. The experimental results demonstrate that the new framework is more efficient and costs less training time compared to several multiagent reinforcement learning algorithms.


Variational Auto-encoder Based Solutions to Interactive Dynamic Influence Diagrams

arXiv.org Artificial Intelligence

Addressing multiagent decision problems in AI, especially those involving collaborative or competitive agents acting concurrently in a partially observable and stochastic environment, remains a formidable challenge. While Interactive Dynamic Influence Diagrams~(I-DIDs) have offered a promising decision framework for such problems, they encounter limitations when the subject agent encounters unknown behaviors exhibited by other agents that are not explicitly modeled within the I-DID. This can lead to sub-optimal responses from the subject agent. In this paper, we propose a novel data-driven approach that utilizes an encoder-decoder architecture, particularly a variational autoencoder, to enhance I-DID solutions. By integrating a perplexity-based tree loss function into the optimization algorithm of the variational autoencoder, coupled with the advantages of Zig-Zag One-Hot encoding and decoding, we generate potential behaviors of other agents within the I-DID that are more likely to contain their true behaviors, even from limited interactions. This new approach enables the subject agent to respond more appropriately to unknown behaviors, thus improving its decision quality. We empirically demonstrate the effectiveness of the proposed approach in two well-established problem domains, highlighting its potential for handling multi-agent decision problems with unknown behaviors. This work is the first time of using neural networks based approaches to deal with the I-DID challenge in agent planning and learning problems.


Inducing Individual Students' Learning Strategies through Homomorphic POMDPs

arXiv.org Artificial Intelligence

Optimizing students' learning strategies is a crucial component in intelligent tutoring systems. Previous research has demonstrated the effectiveness of devising personalized learning strategies for students by modelling their learning processes through partially observable Markov decision process (POMDP). However, the research holds the assumption that the student population adheres to a uniform cognitive pattern. While this assumption simplifies the POMDP modelling process, it evidently deviates from a real-world scenario, thus reducing the precision of inducing individual students' learning strategies. In this article, we propose the homomorphic POMDP (H-POMDP) model to accommodate multiple cognitive patterns and present the parameter learning approach to automatically construct the H-POMDP model. Based on the H-POMDP model, we are able to represent different cognitive patterns from the data and induce more personalized learning strategies for individual students. We conduct experiments to show that, in comparison to the general POMDP approach, the H-POMDP model demonstrates better precision when modelling mixed data from multiple cognitive patterns. Moreover, the learning strategies derived from H-POMDPs exhibit better personalization in the performance evaluation.


Intention Recognition for Multiple Agents

arXiv.org Artificial Intelligence

Intention recognition is an important step to facilitate collaboration in multi-agent systems. Existing work mainly focuses on intention recognition in a single-agent setting and uses a descriptive model, e.g. Bayesian networks, in the recognition process. In this paper, we resort to a prescriptive approach to model agents' behaviour where which their intentions are hidden in implementing their plans. We introduce landmarks into the behavioural model therefore enhancing informative features for identifying common intentions for multiple agents. We further refine the model by focusing only action sequences in their plan and provide a light model for identifying and comparing their intentions. The new models provide a simple approach of grouping agents' common intentions upon partial plans observed in agents' interactions. We provide experimental results in support.


A Fast Algorithm to Compute Maximum k -Plexes in Social Network Analysis

AAAI Conferences

A clique model is one of the most important techniques on the cohesive subgraph detection; however, its applications are rather limited due to restrictive conditions of the model. Hence much research resorts to k -plex โ€” a graph in which any vertex is adjacent to all but at most k vertices โ€” which is a relaxation model of the clique. In this paper, we study the maximum k -plex problem and propose a fast algorithm to compute maximum k -plexes by exploiting structural properties of the problem. In an n -vertex graph, the algorithm computes optimal solutions in c n n O(1) time for a constant c < 2 depending only on k . To the best of our knowledge, this is the first algorithm that breaks the trivial theoretical bound of 2 n for each k โ‰ฅ 3. We also provide experimental results over multiple real-world social network instances in support.


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.


Personalized Ranking Metric Embedding for Next New POI Recommendation

AAAI Conferences

The rapidly growing of Location-based Social Networks (LBSNs) provides a vast amount of check-in data, which enables many services, e.g., point-of-interest (POI) recommendation. In this paper, we study the next new POI recommendation problem in which new POIs with respect to users' current location are to be recommended. The challenge lies in the difficulty in precisely learning users' sequential information and personalizing the recommendation model. To this end, we resort to the Metric Embedding method for the recommendation, which avoids drawbacks of the Matrix Factorization technique. We propose a personalized ranking metric embedding method (PRME) to model personalized check-in sequences. We further develop a PRME-G model, which integrates sequential information, individual preference, and geographical influence, to improve the recommendation performance. Experiments on two real-world LBSN datasets demonstrate that our new algorithm outperforms the state-of-the-art next POI recommendation methods.