Goto

Collaborating Authors

 Zeng, Xia


Automated Proof of Polynomial Inequalities via Reinforcement Learning

arXiv.org Artificial Intelligence

Polynomial inequality proving is fundamental to many mathematical disciplines and finds wide applications in diverse fields. Current traditional algebraic methods are based on searching for a polynomial positive definite representation over a set of basis. However, these methods are limited by truncation degree. To address this issue, this paper proposes an approach based on reinforcement learning to find a {Krivine-basis} representation for proving polynomial inequalities. Specifically, we formulate the inequality proving problem as a linear programming (LP) problem and encode it as a basis selection problem using reinforcement learning (RL), achieving a non-negative {Krivine basis}. Moreover, a fast multivariate polynomial multiplication method based on Fast Fourier Transform (FFT) is employed to enhance the efficiency of action space search. Furthermore, we have implemented a tool called {APPIRL} (Automated Proof of Polynomial Inequalities via Reinforcement Learning). Experimental evaluation on benchmark problems demonstrates the feasibility and effectiveness of our approach. In addition, {APPIRL} has been successfully applied to solve the maximum stable set problem.


MAPLE: Micro Analysis of Pairwise Language Evolution for Few-Shot Claim Verification

arXiv.org Artificial Intelligence

Claim verification is an essential step in the automated fact-checking pipeline which assesses the veracity of a claim against a piece of evidence. In this work, we explore the potential of few-shot claim verification, where only very limited data is available for supervision. We propose MAPLE (Micro Analysis of Pairwise Language Evolution), a pioneering approach that explores the alignment between a claim and its evidence with a small seq2seq model and a novel semantic measure. Its innovative utilization of micro language evolution path leverages unlabelled pairwise data to facilitate claim verification while imposing low demand on data annotations and computing resources. MAPLE demonstrates significant performance improvements over SOTA baselines SEED, PET and LLaMA 2 across three fact-checking datasets: FEVER, Climate FEVER, and SciFact. Data and code are available here: https://github.com/XiaZeng0223/MAPLE


Learning Safe Neural Network Controllers with Barrier Certificates

arXiv.org Artificial Intelligence

We provide a novel approach to synthesize controllers for nonlinear continuous dynamical systems with control against safety properties. The controllers are based on neural networks (NNs). To certify the safety property we utilize barrier functions, which are represented by NNs as well. We train the controller-NN and barrier-NN simultaneously, achieving a verification-in-the-loop synthesis. We provide a prototype tool nncontroller with a number of case studies. The experiment results confirm the feasibility and efficacy of our approach.