Zeng, Kuo-Hao
The One RING: a Robotic Indoor Navigation Generalist
Eftekhar, Ainaz, Weihs, Luca, Hendrix, Rose, Caglar, Ege, Salvador, Jordi, Herrasti, Alvaro, Han, Winson, VanderBil, Eli, Kembhavi, Aniruddha, Farhadi, Ali, Krishna, Ranjay, Ehsani, Kiana, Zeng, Kuo-Hao
Modern robots vary significantly in shape, size, and sensor configurations used to perceive and interact with their environments. However, most navigation policies are embodiment-specific; a policy learned using one robot's configuration does not typically gracefully generalize to another. Even small changes in the body size or camera viewpoint may cause failures. With the recent surge in custom hardware developments, it is necessary to learn a single policy that can be transferred to other embodiments, eliminating the need to (re)train for each specific robot. In this paper, we introduce RING (Robotic Indoor Navigation Generalist), an embodiment-agnostic policy, trained solely in simulation with diverse randomly initialized embodiments at scale. Specifically, we augment the AI2-THOR simulator with the ability to instantiate robot embodiments with controllable configurations, varying across body size, rotation pivot point, and camera configurations. In the visual object-goal navigation task, RING achieves robust performance on real unseen robot platforms (Stretch RE-1, LoCoBot, Unitree's Go1), achieving an average of 72.1% and 78.9% success rate across 5 embodiments in simulation and 4 robot platforms in the real world. (project website: https://one-ring-policy.allen.ai/)
SAT: Spatial Aptitude Training for Multimodal Language Models
Ray, Arijit, Duan, Jiafei, Tan, Reuben, Bashkirova, Dina, Hendrix, Rose, Ehsani, Kiana, Kembhavi, Aniruddha, Plummer, Bryan A., Krishna, Ranjay, Zeng, Kuo-Hao, Saenko, Kate
Spatial perception is a fundamental component of intelligence. While many studies highlight that large multimodal language models (MLMs) struggle to reason about space, they only test for static spatial reasoning, such as categorizing the relative positions of objects. Meanwhile, real-world deployment requires dynamic capabilities like perspective-taking and egocentric action recognition. As a roadmap to improving spatial intelligence, we introduce SAT, Spatial Aptitude Training, which goes beyond static relative object position questions to the more dynamic tasks. SAT contains 218K question-answer pairs for 22K synthetic scenes across a training and testing set. Generated using a photo-realistic physics engine, our dataset can be arbitrarily scaled and easily extended to new actions, scenes, and 3D assets. We find that even MLMs that perform relatively well on static questions struggle to accurately answer dynamic spatial questions. Further, we show that SAT instruction-tuning data improves not only dynamic spatial reasoning on SAT, but also zero-shot performance on existing real-image spatial benchmarks: $23\%$ on CVBench, $8\%$ on the harder BLINK benchmark, and $18\%$ on VSR. When instruction-tuned on SAT, our 13B model matches larger proprietary MLMs like GPT4-V and Gemini-3-1.0 in spatial reasoning. Our data/code is available at http://arijitray1993.github.io/SAT/ .
Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Vision-Language Models
Deitke, Matt, Clark, Christopher, Lee, Sangho, Tripathi, Rohun, Yang, Yue, Park, Jae Sung, Salehi, Mohammadreza, Muennighoff, Niklas, Lo, Kyle, Soldaini, Luca, Lu, Jiasen, Anderson, Taira, Bransom, Erin, Ehsani, Kiana, Ngo, Huong, Chen, YenSung, Patel, Ajay, Yatskar, Mark, Callison-Burch, Chris, Head, Andrew, Hendrix, Rose, Bastani, Favyen, VanderBilt, Eli, Lambert, Nathan, Chou, Yvonne, Chheda, Arnavi, Sparks, Jenna, Skjonsberg, Sam, Schmitz, Michael, Sarnat, Aaron, Bischoff, Byron, Walsh, Pete, Newell, Chris, Wolters, Piper, Gupta, Tanmay, Zeng, Kuo-Hao, Borchardt, Jon, Groeneveld, Dirk, Nam, Crystal, Lebrecht, Sophie, Wittlif, Caitlin, Schoenick, Carissa, Michel, Oscar, Krishna, Ranjay, Weihs, Luca, Smith, Noah A., Hajishirzi, Hannaneh, Girshick, Ross, Farhadi, Ali, Kembhavi, Aniruddha
Today's most advanced vision-language models (VLMs) remain proprietary. The strongest open-weight models rely heavily on synthetic data from proprietary VLMs to achieve good performance, effectively distilling these closed VLMs into open ones. As a result, the community has been missing foundational knowledge about how to build performant VLMs from scratch. We present Molmo, a new family of VLMs that are state-of-the-art in their class of openness. Our key contribution is a collection of new datasets called PixMo, including a dataset of highly detailed image captions for pre-training, a free-form image Q&A dataset for fine-tuning, and an innovative 2D pointing dataset, all collected without the use of external VLMs. The success of our approach relies on careful modeling choices, a well-tuned training pipeline, and, most critically, the quality of our newly collected datasets. Our best-in-class 72B model not only outperforms others in the class of open weight and data models, but also outperforms larger proprietary models including Claude 3.5 Sonnet, and Gemini 1.5 Pro and Flash, second only to GPT-4o based on both academic benchmarks and on a large human evaluation. Our model weights, new datasets, and source code are available at https://molmo.allenai.org/blog.
FLaRe: Achieving Masterful and Adaptive Robot Policies with Large-Scale Reinforcement Learning Fine-Tuning
Hu, Jiaheng, Hendrix, Rose, Farhadi, Ali, Kembhavi, Aniruddha, Martin-Martin, Roberto, Stone, Peter, Zeng, Kuo-Hao, Ehsani, Kiana
In recent years, the Robotics field has initiated several efforts toward building generalist robot policies through large-scale multi-task Behavior Cloning. However, direct deployments of these policies have led to unsatisfactory performance, where the policy struggles with unseen states and tasks. How can we break through the performance plateau of these models and elevate their capabilities to new heights? In this paper, we propose FLaRe, a large-scale Reinforcement Learning fine-tuning framework that integrates robust pre-trained representations, large-scale training, and gradient stabilization techniques. Our method aligns pre-trained policies towards task completion, achieving state-of-the-art (SoTA) performance both on previously demonstrated and on entirely novel tasks and embodiments. Specifically, on a set of long-horizon mobile manipulation tasks, FLaRe achieves an average success rate of 79.5% in unseen environments, with absolute improvements of +23.6% in simulation and +30.7% on real robots over prior SoTA methods. By utilizing only sparse rewards, our approach can enable generalizing to new capabilities beyond the pretraining data with minimal human effort. Moreover, we demonstrate rapid adaptation to new embodiments and behaviors with less than a day of fine-tuning. Videos can be found on the project website at https://robot-flare.github.io/
PoliFormer: Scaling On-Policy RL with Transformers Results in Masterful Navigators
Zeng, Kuo-Hao, Zhang, Zichen, Ehsani, Kiana, Hendrix, Rose, Salvador, Jordi, Herrasti, Alvaro, Girshick, Ross, Kembhavi, Aniruddha, Weihs, Luca
We present PoliFormer (Policy Transformer), an RGB-only indoor navigation agent trained end-to-end with reinforcement learning at scale that generalizes to the real-world without adaptation despite being trained purely in simulation. PoliFormer uses a foundational vision transformer encoder with a causal transformer decoder enabling long-term memory and reasoning. It is trained for hundreds of millions of interactions across diverse environments, leveraging parallelized, multi-machine rollouts for efficient training with high throughput. PoliFormer is a masterful navigator, producing state-of-the-art results across two distinct embodiments, the LoCoBot and Stretch RE-1 robots, and four navigation benchmarks. It breaks through the plateaus of previous work, achieving an unprecedented 85.5% success rate in object goal navigation on the CHORES-S benchmark, a 28.5% absolute improvement. PoliFormer can also be trivially extended to a variety of downstream applications such as object tracking, multi-object navigation, and open-vocabulary navigation with no finetuning.
Imitating Shortest Paths in Simulation Enables Effective Navigation and Manipulation in the Real World
Ehsani, Kiana, Gupta, Tanmay, Hendrix, Rose, Salvador, Jordi, Weihs, Luca, Zeng, Kuo-Hao, Singh, Kunal Pratap, Kim, Yejin, Han, Winson, Herrasti, Alvaro, Krishna, Ranjay, Schwenk, Dustin, VanderBilt, Eli, Kembhavi, Aniruddha
Reinforcement learning (RL) with dense rewards and imitation learning (IL) with human-generated trajectories are the most widely used approaches for training modern embodied agents. RL requires extensive reward shaping and auxiliary losses and is often too slow and ineffective for long-horizon tasks. While IL with human supervision is effective, collecting human trajectories at scale is extremely expensive. In this work, we show that imitating shortest-path planners in simulation produces agents that, given a language instruction, can proficiently navigate, explore, and manipulate objects in both simulation and in the real world using only RGB sensors (no depth map or GPS coordinates). This surprising result is enabled by our end-to-end, transformer-based, SPOC architecture, powerful visual encoders paired with extensive image augmentation, and the dramatic scale and diversity of our training data: millions of frames of shortest-path-expert trajectories collected inside approximately 200,000 procedurally generated houses containing 40,000 unique 3D assets. Our models, data, training code, and newly proposed 10-task benchmarking suite CHORES will be open-sourced.
Selective Visual Representations Improve Convergence and Generalization for Embodied AI
Eftekhar, Ainaz, Zeng, Kuo-Hao, Duan, Jiafei, Farhadi, Ali, Kembhavi, Ani, Krishna, Ranjay
Embodied AI models often employ off the shelf vision backbones like CLIP to encode their visual observations. Although such general purpose representations encode rich syntactic and semantic information about the scene, much of this information is often irrelevant to the specific task at hand. This introduces noise within the learning process and distracts the agent's focus from task-relevant visual cues. Inspired by selective attention in humans-the process through which people filter their perception based on their experiences, knowledge, and the task at hand-we introduce a parameter-efficient approach to filter visual stimuli for embodied AI. Our approach induces a task-conditioned bottleneck using a small learnable codebook module. This codebook is trained jointly to optimize task reward and acts as a task-conditioned selective filter over the visual observation. Our experiments showcase state-of-the-art performance for object goal navigation and object displacement across 5 benchmarks, ProcTHOR, ArchitecTHOR, RoboTHOR, AI2-iTHOR, and ManipulaTHOR. The filtered representations produced by the codebook are also able generalize better and converge faster when adapted to other simulation environments such as Habitat. Our qualitative analyses show that agents explore their environments more effectively and their representations retain task-relevant information like target object recognition while ignoring superfluous information about other objects. Code and pretrained models are available at our project website: https://embodied-codebook.github.io.
Moving Forward by Moving Backward: Embedding Action Impact over Action Semantics
Zeng, Kuo-Hao, Weihs, Luca, Mottaghi, Roozbeh, Farhadi, Ali
A common assumption when training embodied agents is that the impact of taking an action is stable; for instance, executing the "move ahead" action will always move the agent forward by a fixed distance, perhaps with some small amount of actuator-induced noise. This assumption is limiting; an agent may encounter settings that dramatically alter the impact of actions: a move ahead action on a wet floor may send the agent twice as far as it expects and using the same action with a broken wheel might transform the expected translation into a rotation. Instead of relying that the impact of an action stably reflects its pre-defined semantic meaning, we propose to model the impact of actions on-the-fly using latent embeddings. We evaluate our AAP on two challenging visual navigation tasks in the AI2-THOR and Habitat environments and show that our AAP is highly performant even when faced, at inference-time with missing actions and, previously unseen, perturbed action space. Moreover, we observe significant improvement in robustness against these actions when evaluating in real-world scenarios. Humans show a remarkable capacity for planning when faced with substantially constrained or augmented means by which they may interact with their environment. For instance, a human who begins to walk on ice will readily shorten their stride to prevent slipping. Likewise, a human will spare little mental effort in deciding to exert more force to lift their hand when it is weighed down by groceries. Even in these mundane tasks, we see that the effect of a humans' actions can have significantly different outcomes depending on the setting: there is no predefined one-to-one mapping between actions and their impact. The same is true for embodied agents where something as simple as attempting to moving forward can result in radically different outcomes depending on the load the agent carries, the presence of surface debris, and the maintenance level of the agent's actuators (e.g., are any wheels broken?). We call this the action-stability assumption (AS assumption).
Pushing it out of the Way: Interactive Visual Navigation
Zeng, Kuo-Hao, Weihs, Luca, Farhadi, Ali, Mottaghi, Roozbeh
We have observed significant progress in visual navigation for embodied agents. A common assumption in studying visual navigation is that the environments are static; this is a limiting assumption. Intelligent navigation may involve interacting with the environment beyond just moving forward/backward and turning left/right. Sometimes, the best way to navigate is to push something out of the way. In this paper, we study the problem of interactive navigation where agents learn to change the environment to navigate more efficiently to their goals. To this end, we introduce the Neural Interaction Engine (NIE) to explicitly predict the change in the environment caused by the agent's actions. By modeling the changes while planning, we find that agents exhibit significant improvements in their navigational capabilities. More specifically, we consider two downstream tasks in the physics-enabled, visually rich, AI2-THOR environment: (1) reaching a target while the path to the target is blocked (2) moving an object to a target location by pushing it. For both tasks, agents equipped with an NIE significantly outperform agents without the understanding of the effect of the actions indicating the benefits of our approach.
AllenAct: A Framework for Embodied AI Research
Weihs, Luca, Salvador, Jordi, Kotar, Klemen, Jain, Unnat, Zeng, Kuo-Hao, Mottaghi, Roozbeh, Kembhavi, Aniruddha
The domain of Embodied AI, in which agents learn to complete tasks through interaction with their environment from egocentric observations, has experienced substantial growth with the advent of deep reinforcement learning and increased interest from the computer vision, NLP, and robotics communities. This growth has been facilitated by the creation of a large number of simulated environments (such as AI2-THOR, Habitat and CARLA), tasks (like point navigation, instruction following, and embodied question answering), and associated leaderboards. While this diversity has been beneficial and organic, it has also fragmented the community: a huge amount of effort is required to do something as simple as taking a model trained in one environment and testing it in another. This discourages good science. We introduce AllenAct, a modular and flexible learning framework designed with a focus on the unique requirements of Embodied AI research. AllenAct provides first-class support for a growing collection of embodied environments, tasks and algorithms, provides reproductions of state-of-the-art models and includes extensive documentation, tutorials, start-up code, and pre-trained models. We hope that our framework makes Embodied AI more accessible and encourages new researchers to join this exciting area. The framework can be accessed at: https://allenact.org/