Zardini, Gioele
CODEI: Resource-Efficient Task-Driven Co-Design of Perception and Decision Making for Mobile Robots Applied to Autonomous Vehicles
Milojevic, Dejan, Zardini, Gioele, Elser, Miriam, Censi, Andrea, Frazzoli, Emilio
This paper discusses the integration challenges and strategies for designing mobile robots, by focusing on the task-driven, optimal selection of hardware and software to balance safety, efficiency, and minimal usage of resources such as costs, energy, computational requirements, and weight. We emphasize the interplay between perception and motion planning in decision-making by introducing the concept of occupancy queries to quantify the perception requirements for sampling-based motion planners. Sensor and algorithm performance are evaluated using False Negative Rates (FPR) and False Positive Rates (FPR) across various factors such as geometric relationships, object properties, sensor resolution, and environmental conditions. By integrating perception requirements with perception performance, an Integer Linear Programming (ILP) approach is proposed for efficient sensor and algorithm selection and placement. This forms the basis for a co-design optimization that includes the robot body, motion planner, perception pipeline, and computing unit. We refer to this framework for solving the co-design problem of mobile robots as CODEI, short for Co-design of Embodied Intelligence. A case study on developing an Autonomous Vehicle (AV) for urban scenarios provides actionable information for designers, and shows that complex tasks escalate resource demands, with task performance affecting choices of the autonomy stack. The study demonstrates that resource prioritization influences sensor choice: cameras are preferred for cost-effective and lightweight designs, while lidar sensors are chosen for better energy and computational efficiency.
FlashAttention on a Napkin: A Diagrammatic Approach to Deep Learning IO-Awareness
Abbott, Vincent, Zardini, Gioele
Optimizing deep learning algorithms currently requires slow, manual derivation, potentially leaving much performance untapped. Methods like FlashAttention have achieved a x6 performance improvement over native PyTorch by avoiding unnecessary data transfers, but required three iterations over three years. Automated compiled methods have consistently lagged behind. GPUs are limited by both transfers to processors and available compute, with transfer bandwidth having improved at a far slower pace. Already, transfer bandwidth accounts for 46% of GPU energy costs. This indicates the future of energy and capital-efficient algorithms relies on improved consideration of transfer costs (IO-awareness) and a systematic method for deriving optimized algorithms. In this paper, we present a diagrammatic approach to deep learning models which, with simple relabelings, derive optimal implementations and performance models that consider low-level memory. Diagrams generalize down the GPU hierarchy, providing a universal performance model for comparing hardware and quantization choices. Diagrams generate pseudocode, which reveals the application of hardware-specific features such as coalesced memory access, tensor core operations, and overlapped computation. We present attention algorithms for Ampere, which fits 13 warps per SM (FlashAttention fits 8), and for Hopper, which has improved overlapping and may achieve 1.32 PFLOPs.
Generalizable Spacecraft Trajectory Generation via Multimodal Learning with Transformers
Celestini, Davide, Afsharrad, Amirhossein, Gammelli, Daniele, Guffanti, Tommaso, Zardini, Gioele, Lall, Sanjay, Capello, Elisa, D'Amico, Simone, Pavone, Marco
Effective trajectory generation is essential for reliable on-board spacecraft autonomy. Among other approaches, learning-based warm-starting represents an appealing paradigm for solving the trajectory generation problem, effectively combining the benefits of optimization- and data-driven methods. Current approaches for learning-based trajectory generation often focus on fixed, single-scenario environments, where key scene characteristics, such as obstacle positions or final-time requirements, remain constant across problem instances. However, practical trajectory generation requires the scenario to be frequently reconfigured, making the single-scenario approach a potentially impractical solution. To address this challenge, we present a novel trajectory generation framework that generalizes across diverse problem configurations, by leveraging high-capacity transformer neural networks capable of learning from multimodal data sources. Specifically, our approach integrates transformer-based neural network models into the trajectory optimization process, encoding both scene-level information (e.g., obstacle locations, initial and goal states) and trajectory-level constraints (e.g., time bounds, fuel consumption targets) via multimodal representations. The transformer network then generates near-optimal initial guesses for non-convex optimization problems, significantly enhancing convergence speed and performance. The framework is validated through extensive simulations and real-world experiments on a free-flyer platform, achieving up to 30% cost improvement and 80% reduction in infeasible cases with respect to traditional approaches, and demonstrating robust generalization across diverse scenario variations.
Strategic Interactions in Multi-modal Mobility Systems: A Game-Theoretic Perspective
Zardini, Gioele, Lanzetti, Nicolas, Belgioioso, Giuseppe, Hartnik, Christian, Bolognani, Saverio, Dörfler, Florian, Frazzoli, Emilio
The evolution of existing transportation systems,mainly driven by urbanization and increased availability of mobility options, such as private, profit-maximizing ride-hailing companies, calls for tools to reason about their design and regulation. To study this complex socio-technical problem, one needs to account for the strategic interactions of the heterogeneous stakeholders involved in the mobility ecosystem and analyze how they influence the system. In this paper, we focus on the interactions between citizens who compete for the limited resources of a mobility system to complete their desired trip. Specifically, we present a game-theoretic framework for multi-modal mobility systems, where citizens, characterized by heterogeneous preferences, have access to various mobility options and seek individually-optimal decisions. We study the arising game and prove the existence of an equilibrium, which can be efficiently computed via a convex optimization problem. Through both an analytical and a numerical case study for the classic scenario of Sioux Falls, USA, we illustrate the capabilities of our model and perform sensitivity analyses. Importantly, we show how to embed our framework into a "larger" game among stakeholders of the mobility ecosystem (e.g., municipality, Mobility Service Providers, and citizens), effectively giving rise to tools to inform strategic interventions and policy-making in the mobility ecosystem.
Categorification of Negative Information using Enrichment
Censi, Andrea, Frazzoli, Emilio, Lorand, Jonathan, Zardini, Gioele
In many engineering applications it is useful to reason about "negative information". For example, in planning problems, providing an optimal solution is the same as giving a feasible solution (the "positive" information) together with a proof of the fact that there cannot be feasible solutions better than the one given (the "negative" information). We model negative information by introducing the concept of "norphisms", as opposed to the positive information of morphisms. A "nategory" is a category that has "nom"-sets in addition to hom-sets, and specifies the interaction between norphisms and morphisms. In particular, we have composition rules of the form morphism + norphism $\to$ norphism. Norphisms do not compose by themselves; rather, they use morphisms as catalysts. After providing several applied examples, we connect nategories to enriched category theory. Specifically, we prove that categories enriched in de Paiva's dialectica categories GC, in the case C = Set and equipped with a modified monoidal product, define nategories which satisfy additional regularity properties. This formalizes negative information categorically in a way that makes negative and positive morphisms equal citizens.