Zandonati, Ben
Towards Optimal Compression: Joint Pruning and Quantization
Zandonati, Ben, Bucagu, Glenn, Pol, Adrian Alan, Pierini, Maurizio, Sirkin, Olya, Kopetz, Tal
Model compression is instrumental in optimizing deep neural network inference on resource-constrained hardware. The prevailing methods for network compression, namely quantization and pruning, have been shown to enhance efficiency at the cost of performance. Determining the most effective quantization and pruning strategies for individual layers and parameters remains a challenging problem, often requiring computationally expensive and ad hoc numerical optimization techniques. This paper introduces FITCompress, a novel method integrating layer-wise mixed-precision quantization and unstructured pruning using a unified heuristic approach. By leveraging the Fisher Information Metric and path planning through compression space, FITCompress optimally selects a combination of pruning mask and mixed-precision quantization configuration for a given pre-trained model and compression constraint. Experiments on computer vision and natural language processing benchmarks demonstrate that our proposed approach achieves a superior compression-performance trade-off compared to existing state-of-the-art methods. FITCompress stands out for its principled derivation, making it versatile across tasks and network architectures, and represents a step towards achieving optimal compression for neural networks.
Investigating Vision Foundational Models for Tactile Representation Learning
Zandonati, Ben, Wang, Ruohan, Gao, Ruihan, Wu, Yan
Tactile representation learning (TRL) equips robots with the ability to leverage touch information, boosting performance in tasks such as environment perception and object manipulation. However, the heterogeneity of tactile sensors results in many sensor- and task-specific learning approaches. This limits the efficacy of existing tactile datasets, and the subsequent generalisability of any learning outcome. In this work, we investigate the applicability of vision foundational models to sensor-agnostic TRL, via a simple yet effective transformation technique to feed the heterogeneous sensor readouts into the model. Our approach recasts TRL as a computer vision (CV) problem, which permits the application of various CV techniques for tackling TRL-specific challenges. We evaluate our approach on multiple benchmark tasks, using datasets collected from four different tactile sensors. Empirically, we demonstrate significant improvements in task performance, model robustness, as well as cross-sensor and cross-task knowledge transferability with limited data requirements.