Goto

Collaborating Authors

 Zan, Hongying


SILC-EFSA: Self-aware In-context Learning Correction for Entity-level Financial Sentiment Analysis

arXiv.org Artificial Intelligence

In recent years, fine-grained sentiment analysis in finance has gained significant attention, but the scarcity of entity-level datasets remains a key challenge. To address this, we have constructed the largest English and Chinese financial entity-level sentiment analysis datasets to date. Building on this foundation, we propose a novel two-stage sentiment analysis approach called Self-aware In-context Learning Correction (SILC). The first stage involves fine-tuning a base large language model to generate pseudo-labeled data specific to our task. In the second stage, we train a correction model using a GNN-based example retriever, which is informed by the pseudo-labeled data. This two-stage strategy has allowed us to achieve state-of-the-art performance on the newly constructed datasets, advancing the field of financial sentiment analysis. In a case study, we demonstrate the enhanced practical utility of our data and methods in monitoring the cryptocurrency market. Our datasets and code are available at https://github.com/NLP-Bin/SILC-EFSA.


MRC-based Nested Medical NER with Co-prediction and Adaptive Pre-training

arXiv.org Artificial Intelligence

In medical information extraction, medical Named Entity Recognition (NER) is indispensable, playing a crucial role in developing medical knowledge graphs, enhancing medical question-answering systems, and analyzing electronic medical records. The challenge in medical NER arises from the complex nested structures and sophisticated medical terminologies, distinguishing it from its counterparts in traditional domains. In response to these complexities, we propose a medical NER model based on Machine Reading Comprehension (MRC), which uses a task-adaptive pre-training strategy to improve the model's capability in the medical field. Meanwhile, our model introduces multiple word-pair embeddings and multi-granularity dilated convolution to enhance the model's representation ability and uses a combined predictor of Biaffine and MLP to improve the model's recognition performance. Experimental evaluations conducted on the CMeEE, a benchmark for Chinese nested medical NER, demonstrate that our proposed model outperforms the compared state-of-the-art (SOTA) models.


OpenEval: Benchmarking Chinese LLMs across Capability, Alignment and Safety

arXiv.org Artificial Intelligence

The rapid development of Chinese large language models (LLMs) poses big challenges for efficient LLM evaluation. While current initiatives have introduced new benchmarks or evaluation platforms for assessing Chinese LLMs, many of these focus primarily on capabilities, usually overlooking potential alignment and safety issues. To address this gap, we introduce OpenEval, an evaluation testbed that benchmarks Chinese LLMs across capability, alignment and safety. For capability assessment, we include 12 benchmark datasets to evaluate Chinese LLMs from 4 sub-dimensions: NLP tasks, disciplinary knowledge, commonsense reasoning and mathematical reasoning. For alignment assessment, OpenEval contains 7 datasets that examines the bias, offensiveness and illegalness in the outputs yielded by Chinese LLMs. To evaluate safety, especially anticipated risks (e.g., power-seeking, self-awareness) of advanced LLMs, we include 6 datasets. In addition to these benchmarks, we have implemented a phased public evaluation and benchmark update strategy to ensure that OpenEval is in line with the development of Chinese LLMs or even able to provide cutting-edge benchmark datasets to guide the development of Chinese LLMs. In our first public evaluation, we have tested a range of Chinese LLMs, spanning from 7B to 72B parameters, including both open-source and proprietary models. Evaluation results indicate that while Chinese LLMs have shown impressive performance in certain tasks, more attention should be directed towards broader aspects such as commonsense reasoning, alignment, and safety.


Zhongjing: Enhancing the Chinese Medical Capabilities of Large Language Model through Expert Feedback and Real-world Multi-turn Dialogue

arXiv.org Artificial Intelligence

Recent advances in Large Language Models (LLMs) have achieved remarkable breakthroughs in understanding and responding to user intents. However, their performance lag behind general use cases in some expertise domains, such as Chinese medicine. Existing efforts to incorporate Chinese medicine into LLMs rely on Supervised Fine-Tuning (SFT) with single-turn and distilled dialogue data. These models lack the ability for doctor-like proactive inquiry and multi-turn comprehension and cannot align responses with experts' intentions. In this work, we introduce Zhongjing, the first Chinese medical LLaMA-based LLM that implements an entire training pipeline from continuous pre-training, SFT, to Reinforcement Learning from Human Feedback (RLHF). Additionally, we construct a Chinese multi-turn medical dialogue dataset of 70,000 authentic doctor-patient dialogues, CMtMedQA, which significantly enhances the model's capability for complex dialogue and proactive inquiry initiation. We also define a refined annotation rule and evaluation criteria given the unique characteristics of the biomedical domain. Extensive experimental results show that Zhongjing outperforms baselines in various capacities and matches the performance of ChatGPT in some abilities, despite the 100x parameters. Ablation studies also demonstrate the contributions of each component: pre-training enhances medical knowledge, and RLHF further improves instruction-following ability and safety. Our code, datasets, and models are available at https://github.com/SupritYoung/Zhongjing.


A Corpus for Named Entity Recognition in Chinese Novels with Multi-genres

arXiv.org Artificial Intelligence

Entities like person, location, organization are important for literary text analysis. The lack of annotated data hinders the progress of named entity recognition (NER) in literary domain. To promote the research of literary NER, we build the largest multi-genre literary NER corpus containing 263,135 entities in 105,851 sentences from 260 online Chinese novels spanning 13 different genres. Based on the corpus, we investigate characteristics of entities from different genres. We propose several baseline NER models and conduct cross-genre and cross-domain experiments. Experimental results show that genre difference significantly impact NER performance though not as much as domain difference like literary domain and news domain. Compared with NER in news domain, literary NER still needs much improvement and the Out-of-Vocabulary (OOV) problem is more challenging due to the high variety of entities in literary works.


NAPG: Non-Autoregressive Program Generation for Hybrid Tabular-Textual Question Answering

arXiv.org Artificial Intelligence

Hybrid tabular-textual question answering (QA) requires reasoning from heterogeneous information, and the types of reasoning are mainly divided into numerical reasoning and span extraction. Current numerical reasoning methods autoregressively decode program sequences, and each decoding step produces either an operator or an operand. However, the step-by-step decoding suffers from exposure bias, and the accuracy of program generation drops sharply as the decoding steps unfold due to error propagation. In this paper, we propose a non-autoregressive program generation framework, which independently generates complete program tuples containing both operators and operands, can address the error propagation issue while significantly boosting the speed of program generation. Experiments on the ConvFinQA and MultiHiertt datasets show that our non-autoregressive program generation method can bring about substantial improvements over the strong FinQANet (+5.06 Exe Acc and +4.80 Prog Acc points) and MT2Net (+7.97 EM and +6.38 F1 points) baselines, establishing the new state-of-the-art performance, while being much faster (21x) in program generation. Finally, with increasing numbers of numerical reasoning steps the performance drop of our method is significantly smaller than that of the baselines. Our code will be publicly available soon.


Optimizing Deep Transformers for Chinese-Thai Low-Resource Translation

arXiv.org Artificial Intelligence

In this paper, we study the use of deep Transformer translation model for the CCMT 2022 Chinese Thai low-resource machine translation task. We first explore the experiment settings (including the number of BPE merge operations, dropout probability, embedding size, etc.) for the low-resource scenario with the 6-layer Transformer. Considering that increasing the number of layers also increases the regularization on new model parameters (dropout modules are also introduced when using more layers), we adopt the highest performance setting but increase the depth of the Transformer to 24 layers to obtain improved translation quality. Our work obtains the SOTA performance in the Chinese-to-Thai translation in the constrained evaluation.