Zafeiriou, Stefanos
Signs as Tokens: An Autoregressive Multilingual Sign Language Generator
Zuo, Ronglai, Potamias, Rolandos Alexandros, Ververas, Evangelos, Deng, Jiankang, Zafeiriou, Stefanos
Sign language is a visual language that encompasses all linguistic features of natural languages and serves as the primary communication method for the deaf and hard-of-hearing communities. While many studies have successfully adapted pretrained language models (LMs) for sign language translation (sign-to-text), drawing inspiration from its linguistic characteristics, the reverse task of sign language generation (SLG, text-to-sign) remains largely unexplored. Most existing approaches treat SLG as a visual content generation task, employing techniques such as diffusion models to produce sign videos, 2D keypoints, or 3D avatars based on text inputs, overlooking the linguistic properties of sign languages. In this work, we introduce a multilingual sign language model, Signs as Tokens (SOKE), which can generate 3D sign avatars autoregressively from text inputs using a pretrained LM. To align sign language with the LM, we develop a decoupled tokenizer that discretizes continuous signs into token sequences representing various body parts. These sign tokens are integrated into the raw text vocabulary of the LM, allowing for supervised fine-tuning on sign language datasets. To facilitate multilingual SLG research, we further curate a large-scale Chinese sign language dataset, CSL-Daily, with high-quality 3D pose annotations. Extensive qualitative and quantitative evaluations demonstrate the effectiveness of SOKE. The project page is available at https://2000zrl.github.io/soke/.
ID-to-3D: Expressive ID-guided 3D Heads via Score Distillation Sampling
Babiloni, Francesca, Lattas, Alexandros, Deng, Jiankang, Zafeiriou, Stefanos
We propose ID-to-3D, a method to generate identity- and text-guided 3D human heads with disentangled expressions, starting from even a single casually captured in-the-wild image of a subject. The foundation of our approach is anchored in compositionality, alongside the use of task-specific 2D diffusion models as priors for optimization. First, we extend a foundational model with a lightweight expression-aware and ID-aware architecture, and create 2D priors for geometry and texture generation, via fine-tuning only 0.2% of its available training parameters. Then, we jointly leverage a neural parametric representation for the expressions of each subject and a multi-stage generation of highly detailed geometry and albedo texture. This combination of strong face identity embeddings and our neural representation enables accurate reconstruction of not only facial features but also accessories and hair and can be meshed to provide render-ready assets for gaming and telepresence. Our results achieve an unprecedented level of identity-consistent and high-quality texture and geometry generation, generalizing to a ``world'' of unseen 3D identities, without relying on large 3D captured datasets of human assets.
Improving face generation quality and prompt following with synthetic captions
Tarasiou, Michail, Moschoglou, Stylianos, Deng, Jiankang, Zafeiriou, Stefanos
Recent advancements in text-to-image generation using diffusion models have significantly improved the quality of generated images and expanded the ability to depict a wide range of objects. However, ensuring that these models adhere closely to the text prompts remains a considerable challenge. This issue is particularly pronounced when trying to generate photorealistic images of humans. Without significant prompt engineering efforts models often produce unrealistic images and typically fail to incorporate the full extent of the prompt information. This limitation can be largely attributed to the nature of captions accompanying the images used in training large scale diffusion models, which typically prioritize contextual information over details related to the person's appearance. In this paper we address this issue by introducing a training-free pipeline designed to generate accurate appearance descriptions from images of people. We apply this method to create approximately 250,000 captions for publicly available face datasets. We then use these synthetic captions to fine-tune a text-to-image diffusion model. Our results demonstrate that this approach significantly improves the model's ability to generate high-quality, realistic human faces and enhances adherence to the given prompts, compared to the baseline model. We share our synthetic captions, pretrained checkpoints and training code.
Spatio-temporal Prompting Network for Robust Video Feature Extraction
Sun, Guanxiong, Wang, Chi, Zhang, Zhaoyu, Deng, Jiankang, Zafeiriou, Stefanos, Hua, Yang
Frame quality deterioration is one of the main challenges in the field of video understanding. To compensate for the information loss caused by deteriorated frames, recent approaches exploit transformer-based integration modules to obtain spatio-temporal information. However, these integration modules are heavy and complex. Furthermore, each integration module is specifically tailored for its target task, making it difficult to generalise to multiple tasks. In this paper, we present a neat and unified framework, called Spatio-Temporal Prompting Network (STPN). It can efficiently extract robust and accurate video features by dynamically adjusting the input features in the backbone network. Specifically, STPN predicts several video prompts containing spatio-temporal information of neighbour frames. Then, these video prompts are prepended to the patch embeddings of the current frame as the updated input for video feature extraction. Moreover, STPN is easy to generalise to various video tasks because it does not contain task-specific modules. Without bells and whistles, STPN achieves state-of-the-art performance on three widely-used datasets for different video understanding tasks, i.e., ImageNetVID for video object detection, YouTubeVIS for video instance segmentation, and GOT-10k for visual object tracking. Code is available at https://github.com/guanxiongsun/vfe.pytorch.
Latent Alignment with Deep Set EEG Decoders
Bakas, Stylianos, Ludwig, Siegfried, Adamos, Dimitrios A., Laskaris, Nikolaos, Panagakis, Yannis, Zafeiriou, Stefanos
The variability in EEG signals between different individuals poses a significant challenge when implementing brain-computer interfaces (BCI). Commonly proposed solutions to this problem include deep learning models, due to their increased capacity and generalization, as well as explicit domain adaptation techniques. Here, we introduce the Latent Alignment method that won the Benchmarks for EEG Transfer Learning (BEETL) competition and present its formulation as a deep set applied on the set of trials from a given subject. Its performance is compared to recent statistical domain adaptation techniques under various conditions. The experimental paradigms include motor imagery (MI), oddball event-related potentials (ERP) and sleep stage classification, where different well-established deep learning models are applied on each task. Our experimental results show that performing statistical distribution alignment at later stages in a deep learning model is beneficial to the classification accuracy, yielding the highest performance for our proposed method. We further investigate practical considerations that arise in the context of using deep learning and statistical alignment for EEG decoding. In this regard, we study class-discriminative artifacts that can spuriously improve results for deep learning models, as well as the impact of class-imbalance on alignment. We delineate a trade-off relationship between increased classification accuracy when alignment is performed at later modeling stages, and susceptibility to class-imbalance in the set of trials that the statistics are computed on.
FitMe: Deep Photorealistic 3D Morphable Model Avatars
Lattas, Alexandros, Moschoglou, Stylianos, Ploumpis, Stylianos, Gecer, Baris, Deng, Jiankang, Zafeiriou, Stefanos
In this paper, we introduce FitMe, a facial reflectance model and a differentiable rendering optimization pipeline, that can be used to acquire high-fidelity renderable human avatars from single or multiple images. The model consists of a multi-modal style-based generator, that captures facial appearance in terms of diffuse and specular reflectance, and a PCA-based shape model. We employ a fast differentiable rendering process that can be used in an optimization pipeline, while also achieving photorealistic facial shading. Our optimization process accurately captures both the facial reflectance and shape in high-detail, by exploiting the expressivity of the style-based latent representation and of our shape model. FitMe achieves state-of-the-art reflectance acquisition and identity preservation on single "in-the-wild" facial images, while it produces impressive scan-like results, when given multiple unconstrained facial images pertaining to the same identity. In contrast with recent implicit avatar reconstructions, FitMe requires only one minute and produces relightable mesh and texture-based avatars, that can be used by end-user applications.
ViTs for SITS: Vision Transformers for Satellite Image Time Series
Tarasiou, Michail, Chavez, Erik, Zafeiriou, Stefanos
In this paper we introduce the Temporo-Spatial Vision Transformer (TSViT), a fully-attentional model for general Satellite Image Time Series (SITS) processing based on the Vision Transformer (ViT). TSViT splits a SITS record into non-overlapping patches in space and time which are tokenized and subsequently processed by a factorized temporo-spatial encoder. We argue, that in contrast to natural images, a temporal-then-spatial factorization is more intuitive for SITS processing and present experimental evidence for this claim. Additionally, we enhance the model's discriminative power by introducing two novel mechanisms for acquisition-time-specific temporal positional encodings and multiple learnable class tokens. The effect of all novel design choices is evaluated through an extensive ablation study. Our proposed architecture achieves state-of-the-art performance, surpassing previous approaches by a significant margin in three publicly available SITS semantic segmentation and classification datasets. All model, training and evaluation codes are made publicly available to facilitate further research.
ABAW: Valence-Arousal Estimation, Expression Recognition, Action Unit Detection & Emotional Reaction Intensity Estimation Challenges
Kollias, Dimitrios, Tzirakis, Panagiotis, Baird, Alice, Cowen, Alan, Zafeiriou, Stefanos
The fifth Affective Behavior Analysis in-the-wild (ABAW) Competition is part of the respective ABAW Workshop which will be held in conjunction with IEEE Computer Vision and Pattern Recognition Conference (CVPR), 2023. The 5th ABAW Competition is a continuation of the Competitions held at ECCV 2022, IEEE CVPR 2022, ICCV 2021, IEEE FG 2020 and CVPR 2017 Conferences, and is dedicated at automatically analyzing affect. For this year's Competition, we feature two corpora: i) an extended version of the Aff-Wild2 database and ii) the Hume-Reaction dataset. The former database is an audiovisual one of around 600 videos of around 3M frames and is annotated with respect to:a) two continuous affect dimensions -valence (how positive/negative a person is) and arousal (how active/passive a person is)-; b) basic expressions (e.g. happiness, sadness, neutral state); and c) atomic facial muscle actions (i.e., action units). The latter dataset is an audiovisual one in which reactions of individuals to emotional stimuli have been annotated with respect to seven emotional expression intensities. Thus the 5th ABAW Competition encompasses four Challenges: i) uni-task Valence-Arousal Estimation, ii) uni-task Expression Classification, iii) uni-task Action Unit Detection, and iv) Emotional Reaction Intensity Estimation. In this paper, we present these Challenges, along with their corpora, we outline the evaluation metrics, we present the baseline systems and illustrate their obtained performance.
Team Cogitat at NeurIPS 2021: Benchmarks for EEG Transfer Learning Competition
Bakas, Stylianos, Ludwig, Siegfried, Barmpas, Konstantinos, Bahri, Mehdi, Panagakis, Yannis, Laskaris, Nikolaos, Adamos, Dimitrios A., Zafeiriou, Stefanos
Building subject-independent deep learning models for EEG decoding faces the challenge of strong covariate-shift across different datasets, subjects and recording sessions. Our approach to address this difficulty is to explicitly align feature distributions at various layers of the deep learning model, using both simple statistical techniques as well as trainable methods with more representational capacity. This follows in a similar vein as covariance-based alignment methods, often used in a Riemannian manifold context. The methodology proposed herein won first place in the 2021 Benchmarks in EEG Transfer Learning (BEETL) competition, hosted at the NeurIPS conference. The first task of the competition consisted of sleep stage classification, which required the transfer of models trained on younger subjects to perform inference on multiple subjects of older age groups without personalized calibration data, requiring subject-independent models. The second task required to transfer models trained on the subjects of one or more source motor imagery datasets to perform inference on two target datasets, providing a small set of personalized calibration data for multiple test subjects.
Affect Analysis in-the-wild: Valence-Arousal, Expressions, Action Units and a Unified Framework
Kollias, Dimitrios, Zafeiriou, Stefanos
Affect recognition based on subjects' facial expressions has been a topic of major research in the attempt to generate machines that can understand the way subjects feel, act and react. In the past, due to the unavailability of large amounts of data captured in real-life situations, research has mainly focused on controlled environments. However, recently, social media and platforms have been widely used. Moreover, deep learning has emerged as a means to solve visual analysis and recognition problems. This paper exploits these advances and presents significant contributions for affect analysis and recognition in-the-wild. Affect analysis and recognition can be seen as a dual knowledge generation problem, involving: i) creation of new, large and rich in-the-wild databases and ii) design and training of novel deep neural architectures that are able to analyse affect over these databases and to successfully generalise their performance on other datasets. The paper focuses on large in-the-wild databases, i.e., Aff-Wild and Aff-Wild2 and presents the design of two classes of deep neural networks trained with these databases. The first class refers to uni-task affect recognition, focusing on prediction of the valence and arousal dimensional variables. The second class refers to estimation of all main behavior tasks, i.e. valence-arousal prediction; categorical emotion classification in seven basic facial expressions; facial Action Unit detection. A novel multi-task and holistic framework is presented which is able to jointly learn and effectively generalize and perform affect recognition over all existing in-the-wild databases. Large experimental studies illustrate the achieved performance improvement over the existing state-of-the-art in affect recognition. HIS paper presents recent developments and research directions in affective behavior analysis in-the-wild, which is a major targeted characteristic of human computer interaction systems in real life applications. Such systems, machines and robots, should be able to automatically sense and interpret facial and audio-visual signals relevant to emotions, appraisals and intentions; thus, being able to interact in a'human-centered' and engaging manner with people, as their digital assistants in the home, work, operational or industrial environment. Through human affect recognition, the reactions of the machine, or robot, will be consistent with people's expectations and emotions; their verbal and non-verbal interactions will be positively received by humans. Moreover, this interaction should not be dependent on the respective context, nor the human's age, sex, ethnicity, educational level, profession, or social position. As a consequence, the development of intelligent systems able to analyze human behavior in-the-wild can contribute to generation of trust, understanding and closeness between humans and machines in real life environments.