Zadik, Ilias
On the Hardness of Learning One Hidden Layer Neural Networks
Li, Shuchen, Zadik, Ilias, Zampetakis, Manolis
In this work, we consider the problem of learning one hidden layer ReLU neural networks with inputs from $\mathbb{R}^d$. We show that this learning problem is hard under standard cryptographic assumptions even when: (1) the size of the neural network is polynomial in $d$, (2) its input distribution is a standard Gaussian, and (3) the noise is Gaussian and polynomially small in $d$. Our hardness result is based on the hardness of the Continuous Learning with Errors (CLWE) problem, and in particular, is based on the largely believed worst-case hardness of approximately solving the shortest vector problem up to a multiplicative polynomial factor.
Transfer Learning Beyond Bounded Density Ratios
Kalavasis, Alkis, Zadik, Ilias, Zampetakis, Manolis
We study the fundamental problem of transfer learning where a learning algorithm collects data from some source distribution $P$ but needs to perform well with respect to a different target distribution $Q$. A standard change of measure argument implies that transfer learning happens when the density ratio $dQ/dP$ is bounded. Yet, prior thought-provoking works by Kpotufe and Martinet (COLT, 2018) and Hanneke and Kpotufe (NeurIPS, 2019) demonstrate cases where the ratio $dQ/dP$ is unbounded, but transfer learning is possible. In this work, we focus on transfer learning over the class of low-degree polynomial estimators. Our main result is a general transfer inequality over the domain $\mathbb{R}^n$, proving that non-trivial transfer learning for low-degree polynomials is possible under very mild assumptions, going well beyond the classical assumption that $dQ/dP$ is bounded. For instance, it always applies if $Q$ is a log-concave measure and the inverse ratio $dP/dQ$ is bounded. To demonstrate the applicability of our inequality, we obtain new results in the settings of: (1) the classical truncated regression setting, where $dQ/dP$ equals infinity, and (2) the more recent out-of-distribution generalization setting for in-context learning linear functions with transformers. We also provide a discrete analogue of our transfer inequality on the Boolean Hypercube $\{-1,1\}^n$, and study its connections with the recent problem of Generalization on the Unseen of Abbe, Bengio, Lotfi and Rizk (ICML, 2023). Our main conceptual contribution is that the maximum influence of the error of the estimator $\widehat{f}-f^*$ under $Q$, $\mathrm{I}_{\max}(\widehat{f}-f^*)$, acts as a sufficient condition for transferability; when $\mathrm{I}_{\max}(\widehat{f}-f^*)$ is appropriately bounded, transfer is possible over the Boolean domain.
The Franz-Parisi Criterion and Computational Trade-offs in High Dimensional Statistics
Bandeira, Afonso S., Alaoui, Ahmed El, Hopkins, Samuel B., Schramm, Tselil, Wein, Alexander S., Zadik, Ilias
Many high-dimensional statistical inference problems are believed to possess inherent computational hardness. Various frameworks have been proposed to give rigorous evidence for such hardness, including lower bounds against restricted models of computation (such as low-degree functions), as well as methods rooted in statistical physics that are based on free energy landscapes. This paper aims to make a rigorous connection between the seemingly different low-degree and free-energy based approaches. We define a free-energy based criterion for hardness and formally connect it to the well-established notion of low-degree hardness for a broad class of statistical problems, namely all Gaussian additive models and certain models with a sparse planted signal. By leveraging these rigorous connections we are able to: establish that for Gaussian additive models the "algebraic" notion of low-degree hardness implies failure of "geometric" local MCMC algorithms, and provide new low-degree lower bounds for sparse linear regression which seem difficult to prove directly. These results provide both conceptual insights into the connections between different notions of hardness, as well as concrete technical tools such as new methods for proving low-degree lower bounds.
Lattice-Based Methods Surpass Sum-of-Squares in Clustering
Zadik, Ilias, Song, Min Jae, Wein, Alexander S., Bruna, Joan
Clustering is a fundamental primitive in unsupervised learning which gives rise to a rich class of computationally-challenging inference tasks. In this work, we focus on the canonical task of clustering d-dimensional Gaussian mixtures with unknown (and possibly degenerate) covariance. Recent works (Ghosh et al. '20; Mao, Wein '21; Davis, Diaz, Wang '21) have established lower bounds against the class of low-degree polynomial methods and the sum-of-squares (SoS) hierarchy for recovering certain hidden structures planted in Gaussian clustering instances. Prior work on many similar inference tasks portends that such lower bounds strongly suggest the presence of an inherent statistical-to-computational gap for clustering, that is, a parameter regime where the clustering task is statistically possible but no polynomial-time algorithm succeeds. One special case of the clustering task we consider is equivalent to the problem of finding a planted hypercube vector in an otherwise random subspace. We show that, perhaps surprisingly, this particular clustering model does not exhibit a statistical-to-computational gap, even though the aforementioned low-degree and SoS lower bounds continue to apply in this case. To achieve this, we give a polynomial-time algorithm based on the Lenstra--Lenstra--Lovasz lattice basis reduction method which achieves the statistically-optimal sample complexity of d+1 samples. This result extends the class of problems whose conjectured statistical-to-computational gaps can be "closed" by "brittle" polynomial-time algorithms, highlighting the crucial but subtle role of noise in the onset of statistical-to-computational gaps.
On the Cryptographic Hardness of Learning Single Periodic Neurons
Song, Min Jae, Zadik, Ilias, Bruna, Joan
We show a simple reduction which demonstrates the cryptographic hardness of learning a single periodic neuron over isotropic Gaussian distributions in the presence of noise. More precisely, our reduction shows that any polynomial-time algorithm (not necessarily gradient-based) for learning such functions under small noise implies a polynomial-time quantum algorithm for solving worst-case lattice problems, whose hardness form the foundation of lattice-based cryptography. Our core hard family of functions, which are well-approximated by one-layer neural networks, take the general form of a univariate periodic function applied to an affine projection of the data. These functions have appeared in previous seminal works which demonstrate their hardness against gradient-based (Shamir'18), and Statistical Query (SQ) algorithms (Song et al.'17). We show that if (polynomially) small noise is added to the labels, the intractability of learning these functions applies to all polynomial-time algorithms under the aforementioned cryptographic assumptions. Moreover, we demonstrate the necessity of noise in the hardness result by designing a polynomial-time algorithm for learning certain families of such functions under exponentially small adversarial noise. Our proposed algorithm is not a gradient-based or an SQ algorithm, but is rather based on the celebrated Lenstra-Lenstra-Lov\'asz (LLL) lattice basis reduction algorithm. Furthermore, in the absence of noise, this algorithm can be directly applied to solve CLWE detection (Bruna et al.'21) and phase retrieval with an optimal sample complexity of $d+1$ samples. In the former case, this improves upon the quadratic-in-$d$ sample complexity required in (Bruna et al.'21). In the latter case, this improves upon the state-of-the-art AMP-based algorithm, which requires approximately $1.128d$ samples (Barbier et al.'19).
Self-Regularity of Non-Negative Output Weights for Overparameterized Two-Layer Neural Networks
Gamarnik, David, Kฤฑzฤฑldaฤ, Eren C., Zadik, Ilias
We consider the problem of finding a two-layer neural network with sigmoid, rectified linear unit (ReLU), or binary step activation functions that "fits" a training data set as accurately as possible as quantified by the training error; and study the following question: \emph{does a low training error guarantee that the norm of the output layer (outer norm) itself is small?} We answer affirmatively this question for the case of non-negative output weights. Using a simple covering number argument, we establish that under quite mild distributional assumptions on the input/label pairs; any such network achieving a small training error on polynomially many data necessarily has a well-controlled outer norm. Notably, our results (a) have a polynomial (in $d$) sample complexity, (b) are independent of the number of hidden units (which can potentially be very high), (c) are oblivious to the training algorithm; and (d) require quite mild assumptions on the data (in particular the input vector $X\in\mathbb{R}^d$ need not have independent coordinates). We then leverage our bounds to establish generalization guarantees for such networks through \emph{fat-shattering dimension}, a scale-sensitive measure of the complexity class that the network architectures we investigate belong to. Notably, our generalization bounds also have good sample complexity (polynomials in $d$ with a low degree), and are in fact near-linear for some important cases of interest.
High Dimensional Linear Regression using Lattice Basis Reduction
Zadik, Ilias, Gamarnik, David
We consider a high dimensional linear regression problem where the goal is to efficiently recover an unknown vector \beta^* from n noisy linear observations Y=X \beta^*+W in R^n, for known X in R^{n \times p} and unknown W in R^n. Unlike most of the literature on this model we make no sparsity assumption on \beta^*. Instead we adopt a regularization based on assuming that the underlying vectors \beta^* have rational entries with the same denominator Q. We call this Q-rationality assumption. We propose a new polynomial-time algorithm for this task which is based on the seminal Lenstra-Lenstra-Lovasz (LLL) lattice basis reduction algorithm. We establish that under the Q-rationality assumption, our algorithm recovers exactly the vector \beta^* for a large class of distributions for the iid entries of X and non-zero noise W. We prove that it is successful under small noise, even when the learner has access to only one observation (n=1). Furthermore, we prove that in the case of the Gaussian white noise for W, n=o(p/\log p) and Q sufficiently large, our algorithm tolerates a nearly optimal information-theoretic level of the noise.
High Dimensional Linear Regression using Lattice Basis Reduction
Zadik, Ilias, Gamarnik, David
We consider a high dimensional linear regression problem where the goal is to efficiently recover an unknown vector \beta^* from n noisy linear observations Y=X \beta^*+W in R^n, for known X in R^{n \times p} and unknown W in R^n. Unlike most of the literature on this model we make no sparsity assumption on \beta^*. Instead we adopt a regularization based on assuming that the underlying vectors \beta^* have rational entries with the same denominator Q. We call this Q-rationality assumption. We propose a new polynomial-time algorithm for this task which is based on the seminal Lenstra-Lenstra-Lovasz (LLL) lattice basis reduction algorithm. We establish that under the Q-rationality assumption, our algorithm recovers exactly the vector \beta^* for a large class of distributions for the iid entries of X and non-zero noise W. We prove that it is successful under small noise, even when the learner has access to only one observation (n=1). Furthermore, we prove that in the case of the Gaussian white noise for W, n=o(p/\log p) and Q sufficiently large, our algorithm tolerates a nearly optimal information-theoretic level of the noise.
High Dimensional Linear Regression using Lattice Basis Reduction
Gamarnik, David, Zadik, Ilias
We consider a high dimensional linear regression problem where the goal is to efficiently recover an unknown vector $\beta^*$ from $n$ noisy linear observations $Y=X\beta^*+W \in \mathbb{R}^n$, for known $X \in \mathbb{R}^{n \times p}$ and unknown $W \in \mathbb{R}^n$. Unlike most of the literature on this model we make no sparsity assumption on $\beta^*$. Instead we adopt a regularization based on assuming that the underlying vectors $\beta^*$ have rational entries with the same denominator $Q \in \mathbb{Z}_{>0}$. We call this $Q$-rationality assumption. We propose a new polynomial-time algorithm for this task which is based on the seminal Lenstra-Lenstra-Lovasz (LLL) lattice basis reduction algorithm. We establish that under the $Q$-rationality assumption, our algorithm recovers exactly the vector $\beta^*$ for a large class of distributions for the iid entries of $X$ and non-zero noise $W$. We prove that it is successful under small noise, even when the learner has access to only one observation ($n=1$). Furthermore, we prove that in the case of the Gaussian white noise for $W$, $n=o\left(p/\log p\right)$ and $Q$ sufficiently large, our algorithm tolerates a nearly optimal information-theoretic level of the noise.
Orthogonal Machine Learning: Power and Limitations
Mackey, Lester, Syrgkanis, Vasilis, Zadik, Ilias
Double machine learning provides $\sqrt{n}$-consistent estimates of parameters of interest even when high-dimensional or nonparametric nuisance parameters are estimated at an $n^{-1/4}$ rate. The key is to employ Neyman-orthogonal moment equations which are first-order insensitive to perturbations in the nuisance parameters. We show that the $n^{-1/4}$ requirement can be improved to $n^{-1/(2k+2)}$ by employing a $k$-th order notion of orthogonality that grants robustness to more complex or higher-dimensional nuisance parameters. In the partially linear regression setting popular in causal inference, we show that we can construct second-order orthogonal moments if and only if the treatment residual is not normally distributed. Our proof relies on Stein's lemma and may be of independent interest. We conclude by demonstrating the robustness benefits of an explicit doubly-orthogonal estimation procedure for treatment effect.