Goto

Collaborating Authors

 Yue, Zhiling


Decoding Report Generators: A Cyclic Vision-Language Adapter for Counterfactual Explanations

arXiv.org Artificial Intelligence

Despite significant advancements in report generation methods, a critical limitation remains: the lack of interpretability in the generated text. This paper introduces an innovative approach to enhance the explainability of text generated by report generation models. Our method employs cyclic text manipulation and visual comparison to identify and elucidate the features in the original content that influence the generated text. By manipulating the generated reports and producing corresponding images, we create a comparative framework that highlights key attributes and their impact on the text generation process. This approach not only identifies the image features aligned to the generated text but also improves transparency but also provides deeper insights into the decision-making mechanisms of the report generation models. Our findings demonstrate the potential of this method to significantly enhance the interpretability and transparency of AI-generated reports.


Enhancing Weakly Supervised Semantic Segmentation for Fibrosis via Controllable Image Generation

arXiv.org Artificial Intelligence

Fibrotic Lung Disease (FLD) is a severe condition marked by lung stiffening and scarring, leading to respiratory decline. High-resolution computed tomography (HRCT) is critical for diagnosing and monitoring FLD; however, fibrosis appears as irregular, diffuse patterns with unclear boundaries, leading to high inter-observer variability and time-intensive manual annotation. To tackle this challenge, we propose DiffSeg, a novel weakly supervised semantic segmentation (WSSS) method that uses image-level annotations to generate pixel-level fibrosis segmentation, reducing the need for fine-grained manual labeling. Additionally, our DiffSeg incorporates a diffusion-based generative model to synthesize HRCT images with different levels of fibrosis from healthy slices, enabling the generation of the fibrosis-injected slices and their paired fibrosis location. Experiments indicate that our method significantly improves the accuracy of pseudo masks generated by existing WSSS methods, greatly reducing the complexity of manual labeling and enhancing the consistency of the generated masks.