Goto

Collaborating Authors

 Yue, Peng


Research on Foundation Model for Spatial Data Intelligence: China's 2024 White Paper on Strategic Development of Spatial Data Intelligence

arXiv.org Artificial Intelligence

Research status and development trends; on this basis, this report proposes three major challenges faced by large spatial data intelligent models today. This report focuses on the current research status of spatial data intelligent large-scale models and sorts out the research progress in four major thematic areas of spatial data intelligent large-scale models: cities, air and space remote sensing, geography, and transportation. This report systematically introduces the key technologies, characteristics and advantages, research status, future development and other core information of spatial data intelligent large models, involving spatiotemporal big data platforms, distributed computing, 3D virtual reality, space The basic performance of large models such as analysis and visualization, as well as the complex spatial comprehensive performance of large models such as geospatial intelligent computing, deep learning, high-performance processing of big data, geographical knowledge graphs, and geographical intelligent multi-scenario simulation, analyze the application of the above key technologies in spatial data The location and role of smart large models.


Reinforcement Learning for Scalable Train Timetable Rescheduling with Graph Representation

arXiv.org Artificial Intelligence

Train timetable rescheduling (TTR) aims to promptly restore the original operation of trains after unexpected disturbances or disruptions. Currently, this work is still done manually by train dispatchers, which is challenging to maintain performance under various problem instances. To mitigate this issue, this study proposes a reinforcement learning-based approach to TTR, which makes the following contributions compared to existing work. First, we design a simple directed graph to represent the TTR problem, enabling the automatic extraction of informative states through graph neural networks. Second, we reformulate the construction process of TTR's solution, not only decoupling the decision model from the problem size but also ensuring the generated scheme's feasibility. Third, we design a learning curriculum for our model to handle the scenarios with different levels of delay. Finally, a simple local search method is proposed to assist the learned decision model, which can significantly improve solution quality with little additional computation cost, further enhancing the practical value of our method. Extensive experimental results demonstrate the effectiveness of our method. The learned decision model can achieve better performance for various problems with varying degrees of train delay and different scales when compared to handcrafted rules and state-of-the-art solvers.