Goto

Collaborating Authors

 Yu, Zhongming


OrcaLoca: An LLM Agent Framework for Software Issue Localization

arXiv.org Artificial Intelligence

Recent developments in Large Language Model (LLM) agents are revolutionizing Autonomous Software Engineering (ASE), enabling automated coding, problem fixes, and feature improvements. However, localization -- precisely identifying software problems by navigating to relevant code sections -- remains a significant challenge. Current approaches often yield suboptimal results due to a lack of effective integration between LLM agents and precise code search mechanisms. This paper introduces OrcaLoca, an LLM agent framework that improves accuracy for software issue localization by integrating priority-based scheduling for LLM-guided action, action decomposition with relevance scoring, and distance-aware context pruning. Experimental results demonstrate that OrcaLoca becomes the new open-source state-of-the-art (SOTA) in function match rate (65.33%) on SWE-bench Lite. It also improves the final resolved rate of an open-source framework by 6.33 percentage points through its patch generation integration.


MAGE: A Multi-Agent Engine for Automated RTL Code Generation

arXiv.org Artificial Intelligence

The automatic generation of RTL code (e.g., Verilog) through natural language instructions has emerged as a promising direction with the advancement of large language models (LLMs). However, producing RTL code that is both syntactically and functionally correct remains a significant challenge. Existing single-LLM-agent approaches face substantial limitations because they must navigate between various programming languages and handle intricate generation, verification, and modification tasks. To address these challenges, this paper introduces MAGE, the first open-source multi-agent AI system designed for robust and accurate Verilog RTL code generation. We propose a novel high-temperature RTL candidate sampling and debugging system that effectively explores the space of code candidates and significantly improves the quality of the candidates. Furthermore, we design a novel Verilog-state checkpoint checking mechanism that enables early detection of functional errors and delivers precise feedback for targeted fixes, significantly enhancing the functional correctness of the generated RTL code. MAGE achieves a 95.7% rate of syntactic and functional correctness code generation on VerilogEval-Human 2 benchmark, surpassing the state-of-the-art Claude-3.5-sonnet by 23.3 %, demonstrating a robust and reliable approach for AI-driven RTL design workflows.


GeoT: Tensor Centric Library for Graph Neural Network via Efficient Segment Reduction on GPU

arXiv.org Artificial Intelligence

In recent years, Graph Neural Networks (GNNs) have ignited a surge of innovation, significantly enhancing the processing of geometric data structures such as graphs, point clouds, and meshes. As the domain continues to evolve, a series of frameworks and libraries are being developed to push GNN efficiency to new heights. While graph-centric libraries have achieved success in the past, the advent of efficient tensor compilers has highlighted the urgent need for tensor-centric libraries. Yet, efficient tensor-centric frameworks for GNNs remain scarce due to unique challenges and limitations encountered when implementing segment reduction in GNN contexts. We introduce GeoT, a cutting-edge tensor-centric library designed specifically for GNNs via efficient segment reduction. GeoT debuts innovative parallel algorithms that not only introduce new design principles but also expand the available design space. Importantly, GeoT is engineered for straightforward fusion within a computation graph, ensuring compatibility with contemporary tensor-centric machine learning frameworks and compilers. Setting a new performance benchmark, GeoT marks a considerable advancement by showcasing an average operator speedup of 1.80x and an end-to-end speedup of 1.68x.


TorchSparse++: Efficient Training and Inference Framework for Sparse Convolution on GPUs

arXiv.org Artificial Intelligence

Sparse convolution plays a pivotal role in emerging workloads, including point cloud processing in AR/VR, autonomous driving, and graph understanding in recommendation systems. Since the computation pattern is sparse and irregular, specialized high-performance kernels are required. Existing GPU libraries offer two dataflow types for sparse convolution. The gather-GEMM-scatter dataflow is easy to implement but not optimal in performance, while the dataflows with overlapped computation and memory access (e.g.implicit GEMM) are highly performant but have very high engineering costs. In this paper, we introduce TorchSparse++, a new GPU library that achieves the best of both worlds. We create a highly efficient Sparse Kernel Generator that generates performant sparse convolution kernels at less than one-tenth of the engineering cost of the current state-of-the-art system. On top of this, we design the Sparse Autotuner, which extends the design space of existing sparse convolution libraries and searches for the best dataflow configurations for training and inference workloads. Consequently, TorchSparse++ achieves 2.9x, 3.3x, 2.2x and 1.7x measured end-to-end speedup on an NVIDIA A100 GPU over state-of-the-art MinkowskiEngine, SpConv 1.2, TorchSparse and SpConv v2 in inference; and is 1.2-1.3x faster than SpConv v2 in mixed precision training across seven representative autonomous driving benchmarks. It also seamlessly supports graph convolutions, achieving 2.6-7.6x faster inference speed compared with state-of-the-art graph deep learning libraries.


FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours

arXiv.org Artificial Intelligence

Protein structure prediction helps to understand gene translation and protein function, which is of growing interest and importance in structural biology. The AlphaFold model, which used transformer architecture to achieve atomic-level accuracy in protein structure prediction, was a significant breakthrough. However, training and inference of the AlphaFold model are challenging due to its high computation and memory cost. In this work, we present FastFold, an efficient implementation of AlphaFold for both training and inference. We propose Dynamic Axial Parallelism and Duality Async Operations to improve the scaling efficiency of model parallelism. Besides, AutoChunk is proposed to reduce memory cost by over 80% during inference by automatically determining the chunk strategy. Experimental results show that FastFold reduces overall training time from 11 days to 67 hours and achieves 7.5X - 9.5X speedup for long-sequence inference. Furthermore, we scale FastFold to 512 GPUs and achieve an aggregate throughput of 6.02 PetaFLOP/s with 90.1% parallel efficiency.