Yu, Zhi
One Head Eight Arms: Block Matrix based Low Rank Adaptation for CLIP-based Few-Shot Learning
Zhou, Chunpeng, Shen, Qianqian, Yu, Zhi, Bu, Jiajun, Wang, Haishuai
Recent advancements in fine-tuning Vision-Language Foundation Models (VLMs) have garnered significant attention for their effectiveness in downstream few-shot learning tasks.While these recent approaches exhibits some performance improvements, they often suffer from excessive training parameters and high computational costs. To address these challenges, we propose a novel Block matrix-based low-rank adaptation framework, called Block-LoRA, for fine-tuning VLMs on downstream few-shot tasks. Inspired by recent work on Low-Rank Adaptation (LoRA), Block-LoRA partitions the original low-rank decomposition matrix of LoRA into a series of sub-matrices while sharing all down-projection sub-matrices. This structure not only reduces the number of training parameters, but also transforms certain complex matrix multiplication operations into simpler matrix addition, significantly lowering the computational cost of fine-tuning. Notably, Block-LoRA enables fine-tuning CLIP on the ImageNet few-shot benchmark using a single 24GB GPU. We also show that Block-LoRA has the more tighter bound of generalization error than vanilla LoRA. Without bells and whistles, extensive experiments demonstrate that Block-LoRA achieves competitive performance compared to state-of-the-art CLIP-based few-shot methods, while maintaining a low training parameters count and reduced computational overhead.
Is Cognition consistent with Perception? Assessing and Mitigating Multimodal Knowledge Conflicts in Document Understanding
Shao, Zirui, Luo, Chuwei, Zhu, Zhaoqing, Xing, Hangdi, Yu, Zhi, Zheng, Qi, Bu, Jiajun
Multimodal large language models (MLLMs) have shown impressive capabilities in document understanding, a rapidly growing research area with significant industrial demand in recent years. As a multimodal task, document understanding requires models to possess both perceptual and cognitive abilities. However, current MLLMs often face conflicts between perception and cognition. Taking a document VQA task (cognition) as an example, an MLLM might generate answers that do not match the corresponding visual content identified by its OCR (perception). This conflict suggests that the MLLM might struggle to establish an intrinsic connection between the information it "sees" and what it "understands." Such conflicts challenge the intuitive notion that cognition is consistent with perception, hindering the performance and explainability of MLLMs. In this paper, we define the conflicts between cognition and perception as Cognition and Perception (C&P) knowledge conflicts, a form of multimodal knowledge conflicts, and systematically assess them with a focus on document understanding. Our analysis reveals that even GPT-4o, a leading MLLM, achieves only 68.6% C&P consistency. To mitigate the C&P knowledge conflicts, we propose a novel method called Multimodal Knowledge Consistency Fine-tuning. This method first ensures task-specific consistency and then connects the cognitive and perceptual knowledge. Our method significantly reduces C&P knowledge conflicts across all tested MLLMs and enhances their performance in both cognitive and perceptual tasks in most scenarios.
ProcTag: Process Tagging for Assessing the Efficacy of Document Instruction Data
Shen, Yufan, Luo, Chuwei, Zhu, Zhaoqing, Chen, Yang, Zheng, Qi, Yu, Zhi, Bu, Jiajun, Yao, Cong
Recently, large language models (LLMs) and multimodal large language models (MLLMs) have demonstrated promising results on document visual question answering (VQA) task, particularly after training on document instruction datasets. An effective evaluation method for document instruction data is crucial in constructing instruction data with high efficacy, which, in turn, facilitates the training of LLMs and MLLMs for document VQA. However, most existing evaluation methods for instruction data are limited to the textual content of the instructions themselves, thereby hindering the effective assessment of document instruction datasets and constraining their construction. In this paper, we propose ProcTag, a data-oriented method that assesses the efficacy of document instruction data. ProcTag innovatively performs tagging on the execution process of instructions rather than the instruction text itself. By leveraging the diversity and complexity of these tags to assess the efficacy of the given dataset, ProcTag enables selective sampling or filtering of document instructions. Furthermore, DocLayPrompt, a novel semi-structured layout-aware document prompting strategy, is proposed for effectively representing documents. Experiments demonstrate that sampling existing open-sourced and generated document VQA/instruction datasets with ProcTag significantly outperforms current methods for evaluating instruction data. Impressively, with ProcTag-based sampling in the generated document datasets, only 30.5\% of the document instructions are required to achieve 100\% efficacy compared to the complete dataset. The code is publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/ProcTag.
LayoutLLM: Layout Instruction Tuning with Large Language Models for Document Understanding
Luo, Chuwei, Shen, Yufan, Zhu, Zhaoqing, Zheng, Qi, Yu, Zhi, Yao, Cong
Recently, leveraging large language models (LLMs) or multimodal large language models (MLLMs) for document understanding has been proven very promising. However, previous works that employ LLMs/MLLMs for document understanding have not fully explored and utilized the document layout information, which is vital for precise document understanding. In this paper, we propose LayoutLLM, an LLM/MLLM based method for document understanding. The core of LayoutLLM is a layout instruction tuning strategy, which is specially designed to enhance the comprehension and utilization of document layouts. The proposed layout instruction tuning strategy consists of two components: Layout-aware Pre-training and Layout-aware Supervised Fine-tuning. To capture the characteristics of document layout in Layout-aware Pre-training, three groups of pre-training tasks, corresponding to document-level, region-level and segment-level information, are introduced. Furthermore, a novel module called layout chain-of-thought (LayoutCoT) is devised to enable LayoutLLM to focus on regions relevant to the question and generate accurate answers. LayoutCoT is effective for boosting the performance of document understanding. Meanwhile, it brings a certain degree of interpretability, which could facilitate manual inspection and correction. Experiments on standard benchmarks show that the proposed LayoutLLM significantly outperforms existing methods that adopt open-source 7B LLMs/MLLMs for document understanding. The training data of the LayoutLLM is publicly available at https://github.com/AlibabaResearch/AdvancedLiterateMachinery/tree/main/DocumentUnderstanding/LayoutLLM
Less is More : A Closer Look at Multi-Modal Few-Shot Learning
Zhou, Chunpeng, Wang, Haishuai, Yuan, Xilu, Yu, Zhi, Bu, Jiajun
Few-shot Learning aims to learn and distinguish new categories with a very limited number of available images, presenting a significant challenge in the realm of deep learning. Recent researchers have sought to leverage the additional textual or linguistic information of these rare categories with a pre-trained language model to facilitate learning, thus partially alleviating the problem of insufficient supervision signals. However, the full potential of the textual information and pre-trained language model have been underestimated in the few-shot learning till now, resulting in limited performance enhancements. To address this, we propose a simple but effective framework for few-shot learning tasks, specifically designed to exploit the textual information and language model. In more detail, we explicitly exploit the zero-shot capability of the pre-trained language model with the learnable prompt. And we just add the visual feature with the textual feature for inference directly without the intricate designed fusion modules in previous works. Additionally, we apply the self-ensemble and distillation to further enhance these components. Our extensive experiments conducted across four widely used few-shot datasets demonstrate that our simple framework achieves impressive results. Particularly noteworthy is its outstanding performance in the 1-shot learning task, surpassing state-of-the-art methods by an average of 3.0\% in classification accuracy. \footnote{We will make the source codes of the proposed framework publicly available upon acceptance. }.
Multi-View Fusion and Distillation for Subgrade Distresses Detection based on 3D-GPR
Zhou, Chunpeng, Ning, Kangjie, Wang, Haishuai, Yu, Zhi, Zhou, Sheng, Bu, Jiajun
The application of 3D ground-penetrating radar (3D-GPR) for subgrade distress detection has gained widespread popularity. To enhance the efficiency and accuracy of detection, pioneering studies have attempted to adopt automatic detection techniques, particularly deep learning. However, existing works typically rely on traditional 1D A-scan, 2D B-scan or 3D C-scan data of the GPR, resulting in either insufficient spatial information or high computational complexity. To address these challenges, we introduce a novel methodology for the subgrade distress detection task by leveraging the multi-view information from 3D-GPR data. Moreover, we construct a real multi-view image dataset derived from the original 3D-GPR data for the detection task, which provides richer spatial information compared to A-scan and B-scan data, while reducing computational complexity compared to C-scan data. Subsequently, we develop a novel \textbf{M}ulti-\textbf{V}iew \textbf{V}usion and \textbf{D}istillation framework, \textbf{GPR-MVFD}, specifically designed to optimally utilize the multi-view GPR dataset. This framework ingeniously incorporates multi-view distillation and attention-based fusion to facilitate significant feature extraction for subgrade distresses. In addition, a self-adaptive learning mechanism is adopted to stabilize the model training and prevent performance degeneration in each branch. Extensive experiments conducted on this new GPR benchmark demonstrate the effectiveness and efficiency of our proposed framework. Our framework outperforms not only the existing GPR baselines, but also the state-of-the-art methods in the fields of multi-view learning, multi-modal learning, and knowledge distillation. We will release the constructed multi-view GPR dataset with expert-annotated labels and the source codes of the proposed framework.
Translate the Beauty in Songs: Jointly Learning to Align Melody and Translate Lyrics
Li, Chengxi, Fan, Kai, Bu, Jiajun, Chen, Boxing, Huang, Zhongqiang, Yu, Zhi
Song translation requires both translation of lyrics and alignment of music notes so that the resulting verse can be sung to the accompanying melody, which is a challenging problem that has attracted some interests in different aspects of the translation process. In this paper, we propose Lyrics-Melody Translation with Adaptive Grouping (LTAG), a holistic solution to automatic song translation by jointly modeling lyrics translation and lyrics-melody alignment. It is a novel encoder-decoder framework that can simultaneously translate the source lyrics and determine the number of aligned notes at each decoding step through an adaptive note grouping module. To address data scarcity, we commissioned a small amount of training data annotated specifically for this task and used large amounts of augmented data through back-translation. Experiments conducted on an English-Chinese song translation data set show the effectiveness of our model in both automatic and human evaluation.
A machine-learning-based tool for last closed-flux surface reconstruction on tokamaks
Wan, Chenguang, Yu, Zhi, Pau, Alessandro, Liu, Xiaojuan, Li, Jiangang
Nuclear fusion represents one of the best alternatives for a sustainable source of clean energy. Tokamaks allow to confine fusion plasma with magnetic fields and one of the main challenges in the control of the magnetic configuration is the prediction/reconstruction of the Last Closed-Flux Surface (LCFS). The evolution in time of the LCFS is determined by the interaction of the actuator coils and the internal tokamak plasma. This task requires real-time capable tools able to deal with high-dimensional data as well as with high resolution in time, where the interaction between a wide range of input actuator coils with internal plasma state responses add additional layer of complexity. In this work, we present the application of a novel state of the art machine learning model to the LCFS reconstruction in the Experimental Advanced Superconducting Tokamak (EAST) that learns automatically from the experimental data of EAST. This architecture allows not only offline simulation and testing of a particular control strategy, but can also be embedded in the real-time control system for online magnetic equilibrium reconstruction and prediction. In the real-time modeling test, our approach achieves very high accuracies, with over 99% average similarity in LCFS reconstruction of the entire discharge process.
SentiPrompt: Sentiment Knowledge Enhanced Prompt-Tuning for Aspect-Based Sentiment Analysis
Li, Chengxi, Gao, Feiyu, Bu, Jiajun, Xu, Lu, Chen, Xiang, Gu, Yu, Shao, Zirui, Zheng, Qi, Zhang, Ningyu, Wang, Yongpan, Yu, Zhi
Aspect-based sentiment analysis (ABSA) is an emerging fine-grained sentiment analysis task that aims to extract aspects, classify corresponding sentiment polarities and find opinions as the causes of sentiment. The latest research tends to solve the ABSA task in a unified way with end-to-end frameworks. Yet, these frameworks get fine-tuned from downstream tasks without any task-adaptive modification. Specifically, they do not use task-related knowledge well or explicitly model relations between aspect and opinion terms, hindering them from better performance. In this paper, we propose SentiPrompt to use sentiment knowledge enhanced prompts to tune the language model in the unified framework. We inject sentiment knowledge regarding aspects, opinions, and polarities into prompt and explicitly model term relations via constructing consistency and polarity judgment templates from the ground truth triplets. Experimental results demonstrate that our approach can outperform strong baselines on Triplet Extraction, Pair Extraction, and Aspect Term Extraction with Sentiment Classification by a notable margin.