Plotting

 Yu, Yong


Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items

arXiv.org Artificial Intelligence

E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant time and resource costs tied to product design and manufacturing inventory. This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing the users' group-level personalized preferences towards multiple generated candidate images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to capture the comparative behaviors among multiple candidates. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts, validating the revolutionary potential of AI-generated items for e-commercial platforms.


PALo: Learning Posture-Aware Locomotion for Quadruped Robots

arXiv.org Artificial Intelligence

With the rapid development of embodied intelligence, locomotion control of quadruped robots on complex terrains has become a research hotspot. Unlike traditional locomotion control approaches focusing solely on velocity tracking, we pursue to balance the agility and robustness of quadruped robots on diverse and complex terrains. To this end, we propose an end-to-end deep reinforcement learning framework for posture-aware locomotion named PALo, which manages to handle simultaneous linear and angular velocity tracking and real-time adjustments of body height, pitch, and roll angles. In PALo, the locomotion control problem is formulated as a partially observable Markov decision process, and an asymmetric actor-critic architecture is adopted to overcome the sim-to-real challenge. Further, by incorporating customized training curricula, PALo achieves agile posture-aware locomotion control in simulated environments and successfully transfers to real-world settings without fine-tuning, allowing real-time control of the quadruped robot's locomotion and body posture across challenging terrains. Through in-depth experimental analysis, we identify the key components of PALo that contribute to its performance, further validating the effectiveness of the proposed method. The results of this study provide new possibilities for the low-level locomotion control of quadruped robots in higher dimensional command spaces and lay the foundation for future research on upper-level modules for embodied intelligence.


Retrieval-Augmented Process Reward Model for Generalizable Mathematical Reasoning

arXiv.org Artificial Intelligence

While large language models (LLMs) have significantly advanced mathematical reasoning, Process Reward Models (PRMs) have been developed to evaluate the logical validity of reasoning steps. However, PRMs still struggle with out-of-distribution (OOD) challenges. This paper identifies key OOD issues, including step OOD, caused by differences in reasoning patterns across model types and sizes, and question OOD, which arises from dataset shifts between training data and real-world problems. To address these issues, we introduce Retrieval-Augmented Process Reward Model (RetrievalPRM), a novel framework designed to tackle these OOD issues. By utilizing a two-stage retrieval-enhanced mechanism, RetrievalPRM retrieves semantically similar questions and steps as a warmup, enhancing PRM's ability to evaluate target steps and improving generalization and reasoning consistency across different models and problem types. Our extensive experiments demonstrate that RetrievalPRM outperforms existing baselines across multiple real-world datasets. Our open-source contributions include a retrieval-enhanced dataset, a tuning framework for PRM training, and the RetrievalPRM model, establishing a new standard for PRM performance.


RHINO: Learning Real-Time Humanoid-Human-Object Interaction from Human Demonstrations

arXiv.org Artificial Intelligence

Figure 1: RHINO has the capabilities of real-time interaction on diverse tasks. Abstract--Humanoid robots have shown success in locomotion its effectiveness, flexibility, and safety in various scenarios. We summarize related works in each tasks in real-time. Some others focus on recognizing human category and highlight the differences between our work. The robot cannot be interrupted once a task Humanoid robots need to estimate the human physical and is in progress, and further human commands can only be mental states to provide appropriate assistance [35]. Object information in the complexity of human interactions [33, 37], but they often the environment also plays an important role in predicting suffer from high latency and are not suitable for real-time human intention by combining it with human motion. These limitations hinder robots from rapid interaction, such as pointing gestures [14] and grabbing interventions and robust, multi-step interactions in humancentered objects [24], provides a broader semantic space for human tasks. Most works on human intention recognition treat human-robot interaction with real-time intention recognition the interaction as a two-stage process, where the robot first and various skills is urgently needed to tackle the above predicts the human intention and then executes the task. Our work aims to react learning framework for Reactive Humanoid-human to human signals in real time, enabling the downstream tasks INteraction and Object Manipulation. RHINO decouples the to be interrupted at any time. In human-robot interaction and object manipulation skills based on predicted intentions. To ensure unique opportunity to learn natural motion from retargeted the scalability of RHINO across a wide range of skills, we human motion data [15]. Human motion data can be collected design a pipeline for learning the interactions from humanobject-human from motion capture systems or network videos.


Boost, Disentangle, and Customize: A Robust System2-to-System1 Pipeline for Code Generation

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable capabilities in various domains, particularly in system 1 tasks, yet the intricacies of their problem-solving mechanisms in system 2 tasks are not sufficiently explored. Recent research on System2-to-System1 methods surge, exploring the System 2 reasoning knowledge via inference-time computation and compressing the explored knowledge into System 1 process. In this paper, we focus on code generation, which is a representative System 2 task, and identify two primary challenges: (1) the complex hidden reasoning processes and (2) the heterogeneous data distributions that complicate the exploration and training of robust LLM solvers. To tackle these issues, we propose a novel BDC framework that explores insightful System 2 knowledge of LLMs using a MC-Tree-Of-Agents algorithm with mutual \textbf{B}oosting, \textbf{D}isentangles the heterogeneous training data for composable LoRA-experts, and obtain \textbf{C}ustomized problem solver for each data instance with an input-aware hypernetwork to weight over the LoRA-experts, offering effectiveness, flexibility, and robustness. This framework leverages multiple LLMs through mutual verification and boosting, integrated into a Monte-Carlo Tree Search process enhanced by reflection-based pruning and refinement. Additionally, we introduce the DisenLora algorithm, which clusters heterogeneous data to fine-tune LLMs into composable Lora experts, enabling the adaptive generation of customized problem solvers through an input-aware hypernetwork. This work lays the groundwork for advancing LLM capabilities in complex reasoning tasks, offering a novel System2-to-System1 solution.


Who's the MVP? A Game-Theoretic Evaluation Benchmark for Modular Attribution in LLM Agents

arXiv.org Artificial Intelligence

Large Language Model (LLM) agents frameworks often employ modular architectures, incorporating components such as planning, reasoning, action execution, and reflection to tackle complex tasks. However, quantifying the contribution of each module to overall system performance remains a significant challenge, impeding optimization and interpretability. To address this, we introduce CapaBench (Capability-level Assessment Benchmark), an evaluation framework grounded in cooperative game theory's Shapley Value, which systematically measures the marginal impact of individual modules and their interactions within an agent's architecture. By replacing default modules with test variants across all possible combinations, CapaBench provides a principle method for attributing performance contributions. Key contributions include: (1) We are the first to propose a Shapley Value-based methodology for quantifying the contributions of capabilities in LLM agents; (2) Modules with high Shapley Values consistently lead to predictable performance gains when combined, enabling targeted optimization; and (3) We build a multi-round dataset of over 1,500 entries spanning diverse domains and practical task scenarios, enabling comprehensive evaluation of agent capabilities. CapaBench bridges the gap between component-level evaluation and holistic system assessment, providing actionable insights for optimizing modular LLM agents and advancing their deployment in complex, real-world scenarios.


Full-Stack Optimized Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation

arXiv.org Artificial Intelligence

In this paper, we address the lifelong sequential behavior incomprehension problem in large language models (LLMs) for recommendation, where LLMs struggle to extract useful information from long user behavior sequences, even within their context limits. To tackle this, we propose ReLLaX (Retrieval-enhanced Large Language models Plus), a framework offering optimization across data, prompt, and parameter levels. At the data level, we introduce Semantic User Behavior Retrieval (SUBR) to reduce sequence heterogeneity, making it easier for LLMs to extract key information. For prompt-level enhancement, we employ Soft Prompt Augmentation (SPA) to inject collaborative knowledge, aligning item representations with recommendation tasks and improving LLMs's exploration of item relationships. Finally, at the parameter level, we propose Component Fully-interactive LoRA (CFLoRA), which enhances LoRA's expressiveness by enabling interactions between its components, allowing better capture of sequential information. Moreover, we present new perspectives to compare current LoRA-based LLM4Rec methods, i.e. from both a composite and a decomposed view. We theoretically demonstrate that the ways they employ LoRA for recommendation are degraded versions of our CFLoRA, with different constraints on atom component interactions. Extensive experiments on three public datasets demonstrate ReLLaX's superiority over existing baselines and its ability to mitigate lifelong sequential behavior incomprehension effectively.


An Automatic Graph Construction Framework based on Large Language Models for Recommendation

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) have emerged as state-of-the-art methods to learn from graph-structured data for recommendation. However, most existing GNN-based recommendation methods focus on the optimization of model structures and learning strategies based on pre-defined graphs, neglecting the importance of the graph construction stage. Earlier works for graph construction usually rely on speciffic rules or crowdsourcing, which are either too simplistic or too labor-intensive. Recent works start to utilize large language models (LLMs) to automate the graph construction, in view of their abundant open-world knowledge and remarkable reasoning capabilities. Nevertheless, they generally suffer from two limitations: (1) invisibility of global view (e.g., overlooking contextual information) and (2) construction inefficiency. To this end, we introduce AutoGraph, an automatic graph construction framework based on LLMs for recommendation. Specifically, we first use LLMs to infer the user preference and item knowledge, which is encoded as semantic vectors. Next, we employ vector quantization to extract the latent factors from the semantic vectors. The latent factors are then incorporated as extra nodes to link the user/item nodes, resulting in a graph with in-depth global-view semantics. We further design metapath-based message aggregation to effectively aggregate the semantic and collaborative information. The framework is model-agnostic and compatible with different backbone models. Extensive experiments on three real-world datasets demonstrate the efficacy and efffciency of AutoGraph compared to existing baseline methods. We have deployed AutoGraph in Huawei advertising platform, and gain a 2.69% improvement on RPM and a 7.31% improvement on eCPM in the online A/B test. Currently AutoGraph has been used as the main trafffc model, serving hundreds of millions of people.


D4W: Dependable Data-Driven Dynamics for Wheeled Robots

arXiv.org Artificial Intelligence

Wheeled robots have gained significant attention due to their wide range of applications in manufacturing, logistics, and service industries. However, due to the difficulty of building a highly accurate dynamics model for wheeled robots, developing and testing control algorithms for them remains challenging and time-consuming, requiring extensive physical experimentation. To address this problem, we propose D4W, i.e., Dependable Data-Driven Dynamics for Wheeled Robots, a simulation framework incorporating data-driven methods to accelerate the development and evaluation of algorithms for wheeled robots. The key contribution of D4W is a solution that utilizes real-world sensor data to learn accurate models of robot dynamics. The learned dynamics can capture complex robot behaviors and interactions with the environment throughout simulations, surpassing the limitations of analytical methods, which only work in simplified scenarios. Experimental results show that D4W achieves the best simulation accuracy compared to traditional approaches, allowing for rapid iteration of wheel robot algorithms with less or no need for fine-tuning in reality. We further verify the usability and practicality of the proposed framework through integration with existing simulators and controllers.


Wireless-Friendly Window Position Optimization for RIS-Aided Outdoor-to-Indoor Networks based on Multi-Modal Large Language Model

arXiv.org Artificial Intelligence

This paper aims to simultaneously optimize indoor wireless and daylight performance by adjusting the positions of windows and the beam directions of window-deployed reconfigurable intelligent surfaces (RISs) for RIS-aided outdoor-to-indoor (O2I) networks utilizing large language models (LLM) as optimizers. Firstly, we illustrate the wireless and daylight system models of RIS-aided O2I networks and formulate a joint optimization problem to enhance both wireless traffic sum rate and daylight illumination performance. Then, we present a multi-modal LLM-based window optimization (LMWO) framework, accompanied by a prompt construction template to optimize the overall performance in a zero-shot fashion, functioning as both an architect and a wireless network planner. Finally, we analyze the optimization performance of the LMWO framework and the impact of the number of windows, room size, number of RIS units, and daylight factor. Numerical results demonstrate that our proposed LMWO framework can achieve outstanding optimization performance in terms of initial performance, convergence speed, final outcomes, and time complexity, compared with classic optimization methods. The building's wireless performance can be significantly enhanced while ensuring indoor daylight performance.