Yu, Yang
Debiased Offline Representation Learning for Fast Online Adaptation in Non-stationary Dynamics
Zhang, Xinyu, Qiu, Wenjie, Li, Yi-Chen, Yuan, Lei, Jia, Chengxing, Zhang, Zongzhang, Yu, Yang
Developing policies that can adjust to non-stationary environments is essential for real-world reinforcement learning applications. However, learning such adaptable policies in offline settings, with only a limited set of pre-collected trajectories, presents significant challenges. A key difficulty arises because the limited offline data makes it hard for the context encoder to differentiate between changes in the environment dynamics and shifts in the behavior policy, often leading to context misassociations. To address this issue, we introduce a novel approach called Debiased Offline Representation for fast online Adaptation (DORA). DORA incorporates an information bottleneck principle that maximizes mutual information between the dynamics encoding and the environmental data, while minimizing mutual information between the dynamics encoding and the actions of the behavior policy. We present a practical implementation of DORA, leveraging tractable bounds of the information bottleneck principle. Our experimental evaluation across six benchmark MuJoCo tasks with variable parameters demonstrates that DORA not only achieves a more precise dynamics encoding but also significantly outperforms existing baselines in terms of performance.
Controlling Large Language Model with Latent Actions
Jia, Chengxing, Li, Ziniu, Wang, Pengyuan, Li, Yi-Chen, Hou, Zhenyu, Dong, Yuxiao, Yu, Yang
Adapting Large Language Models (LLMs) to downstream tasks using Reinforcement Learning (RL) has proven to be an effective approach. However, LLMs do not inherently define the structure of an agent for RL training, particularly in terms of defining the action space. This paper studies learning a compact latent action space to enhance the controllability and exploration of RL for LLMs. We propose Controlling Large Language Models with Latent Actions (CoLA), a framework that integrates a latent action space into pre-trained LLMs. We apply CoLA to the Llama-3.1-8B model. Our experiments demonstrate that, compared to RL with token-level actions, CoLA's latent action enables greater semantic diversity in text generation. For enhancing downstream tasks, we show that CoLA with RL achieves a score of 42.4 on the math500 benchmark, surpassing the baseline score of 38.2, and reaches 68.2 when augmented with a Monte Carlo Tree Search variant. Furthermore, CoLA with RL consistently improves performance on agent-based tasks without degrading the pre-trained LLM's capabilities, unlike the baseline. Finally, CoLA reduces computation time by half in tasks involving enhanced thinking prompts for LLMs by RL. These results highlight CoLA's potential to advance RL-based adaptation of LLMs for downstream applications.
NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios
Gao, Songyi, Tu, Zuolin, Qin, Rong-Jun, Sun, Yi-Hao, Chen, Xiong-Hui, Yu, Yang
Offline reinforcement learning (RL) aims to learn from historical data without requiring (costly) access to the environment. To facilitate offline RL research, we previously introduced NeoRL, which highlighted that datasets from real-world tasks are often conservative and limited. With years of experience applying offline RL to various domains, we have identified additional real-world challenges. These include extremely conservative data distributions produced by deployed control systems, delayed action effects caused by high-latency transitions, external factors arising from the uncontrollable variance of transitions, and global safety constraints that are difficult to evaluate during the decision-making process. These challenges are underrepresented in previous benchmarks but frequently occur in real-world tasks. To address this, we constructed the extended Near Real-World Offline RL Benchmark (NeoRL-2), which consists of 7 datasets from 7 simulated tasks along with their corresponding evaluation simulators. Benchmarking results from state-of-the-art offline RL approaches demonstrate that current methods often struggle to outperform the data-collection behavior policy, highlighting the need for more effective methods. We hope NeoRL-2 will accelerate the development of reinforcement learning algorithms for real-world applications. The benchmark project page is available at https://github.com/polixir/NeoRL2.
Using Subgraph GNNs for Node Classification:an Overlooked Potential Approach
Zeng, Qian, Lin, Xin, Gao, Jingyi, Yu, Yang
Previous studies have demonstrated the strong performance of Graph Neural Networks (GNNs) in node classification. However, most existing GNNs adopt a node-centric perspective and rely on global message passing, leading to high computational and memory costs that hinder scalability. To mitigate these challenges, subgraph-based methods have been introduced, leveraging local subgraphs as approximations of full computational trees. While this approach improves efficiency, it often suffers from performance degradation due to the loss of global contextual information, limiting its effectiveness compared to global GNNs. To address this trade-off between scalability and classification accuracy, we reformulate the node classification task as a subgraph classification problem and propose SubGND (Subgraph GNN for NoDe). This framework introduces a differentiated zero-padding strategy and an Ego-Alter subgraph representation method to resolve label conflicts while incorporating an Adaptive Feature Scaling Mechanism to dynamically adjust feature contributions based on dataset-specific dependencies. Experimental results on six benchmark datasets demonstrate that SubGND achieves performance comparable to or surpassing global message-passing GNNs, particularly in heterophilic settings, highlighting its effectiveness and scalability as a promising solution for node classification.
MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations
Zhang, Ziyang, Yu, Yang, Chen, Yucheng, Yang, Xulei, Yeo, Si Yong
Despite significant progress in Vision-Language Pre-training (VLP), current approaches predominantly emphasize feature extraction and cross-modal comprehension, with limited attention to generating or transforming visual content. This gap hinders the model's ability to synthesize coherent and novel visual representations from textual prompts, thereby reducing the effectiveness of multi-modal learning. In this work, we propose MedUnifier, a unified VLP framework tailored for medical data. MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies, including image-text contrastive alignment, image-text matching and image-grounded text generation. Unlike traditional methods that reply on continuous visual representations, our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality by effectively leveraging discrete representations. Our framework's effectiveness is evidenced by the experiments on established benchmarks, including uni-modal tasks (supervised fine-tuning), cross-modal tasks (image-text retrieval and zero-shot image classification), and multi-modal tasks (medical report generation, image synthesis), where it achieves state-of-the-art performance across various tasks. MedUnifier also offers a highly adaptable tool for a wide range of language and vision tasks in healthcare, marking advancement toward the development of a generalizable AI model for medical applications.
Sentence-level Reward Model can Generalize Better for Aligning LLM from Human Preference
Qiu, Wenjie, Li, Yi-Chen, Zhang, Xuqin, Zhang, Tianyi, Zhang, Yihang, Zhang, Zongzhang, Yu, Yang
Learning reward models from human preference datasets and subsequently optimizing language models via reinforcement learning has emerged as a fundamental paradigm for aligning LLMs with human preferences. The performance of the reward model plays a crucial role in the effectiveness of alignment. Previous reward models operate at a coarse-grained level, requiring the generation of a complete response to obtain a reward value. The sparse reward may present challenges for downstream reinforcement learning. While recent efforts have attempted to learn token-level reward models, the lack of explicit semantic information makes it difficult to model the credit of every individual token. In this paper, we propose assigning scores to every sentence, introducing an intermediate-grained reward model. By segmenting the complete response into sentences and applying differential operations to reward output at the start and end positions of each sentence, we can effectively model the rewards of sentences. Moreover, a novel attention mechanism is introduced to aggregate the scores of all sentences into a response-level score, which allows it to be trained using the Bradley-Terry model. On common benchmarks, our method outperforms the response-level reward model by 2.7% on RewardBench (for reward modeling evaluation) and surpasses all baselines on AlpacaEval (for alignment evaluation).
InfiR : Crafting Effective Small Language Models and Multimodal Small Language Models in Reasoning
Xie, Congkai, Cai, Shuo, Wang, Wenjun, Li, Pengxiang, Sang, Zhijie, Yang, Kejing, Zhang, Yiming, Li, Zhen, Zhu, Guanghao, Liu, Zeyu, Yu, Yang, Liu, Yuhang, Lu, Su, He, Baoyi, Zhou, Qi, Han, Xiaotian, Yuan, Jianbo, Zhang, Shengyu, Wu, Fei, Yang, Hongxia
Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have made significant advancements in reasoning capabilities. However, they still face challenges such as high computational demands and privacy concerns. This paper focuses on developing efficient Small Language Models (SLMs) and Multimodal Small Language Models (MSLMs) that retain competitive reasoning abilities. We introduce a novel training pipeline that enhances reasoning capabilities and facilitates deployment on edge devices, achieving state-of-the-art performance while minimizing development costs. \InfR~ aims to advance AI systems by improving reasoning, reducing adoption barriers, and addressing privacy concerns through smaller model sizes. Resources are available at https://github. com/Reallm-Labs/InfiR.
Behavior-Regularized Diffusion Policy Optimization for Offline Reinforcement Learning
Gao, Chen-Xiao, Wu, Chenyang, Cao, Mingjun, Xiao, Chenjun, Yu, Yang, Zhang, Zongzhang
The primary focus of offline reinforcement learning (RL) is to manage the risk of hazardous exploitation of out-of-distribution actions. An effective approach to achieve this goal is through behavior regularization, which augments conventional RL objectives by incorporating constraints that enforce the policy to remain close to the behavior policy. Nevertheless, existing literature on behavior-regularized RL primarily focuses on explicit policy parameterizations, such as Gaussian policies. Consequently, it remains unclear how to extend this framework to more advanced policy parameterizations, such as diffusion models. In this paper, we introduce BDPO, a principled behavior-regularized RL framework tailored for diffusion-based policies, thereby combining the expressive power of diffusion policies and the robustness provided by regularization. The key ingredient of our method is to calculate the Kullback-Leibler (KL) regularization analytically as the accumulated discrepancies in reverse-time transition kernels along the diffusion trajectory. By integrating the regularization, we develop an efficient two-time-scale actor-critic RL algorithm that produces the optimal policy while respecting the behavior constraint. Comprehensive evaluations conducted on synthetic 2D tasks and continuous control tasks from the D4RL benchmark validate its effectiveness and superior performance.
MPT: A Large-scale Multi-Phytoplankton Tracking Benchmark
Yu, Yang, Li, Yuezun, Sun, Xin, Dong, Junyu
Phytoplankton are a crucial component of aquatic ecosystems, and effective monitoring of them can provide valuable insights into ocean environments and ecosystem changes. Traditional phytoplankton monitoring methods are often complex and lack timely analysis. Therefore, deep learning algorithms offer a promising approach for automated phytoplankton monitoring. However, the lack of large-scale, high-quality training samples has become a major bottleneck in advancing phytoplankton tracking. In this paper, we propose a challenging benchmark dataset, Multiple Phytoplankton Tracking (MPT), which covers diverse background information and variations in motion during observation. The dataset includes 27 species of phytoplankton and zooplankton, 14 different backgrounds to simulate diverse and complex underwater environments, and a total of 140 videos. To enable accurate real-time observation of phytoplankton, we introduce a multi-object tracking method, Deviation-Corrected Multi-Scale Feature Fusion Tracker(DSFT), which addresses issues such as focus shifts during tracking and the loss of small target information when computing frame-to-frame similarity. Specifically, we introduce an additional feature extractor to predict the residuals of the standard feature extractor's output, and compute multi-scale frame-to-frame similarity based on features from different layers of the extractor. Extensive experiments on the MPT have demonstrated the validity of the dataset and the superiority of DSFT in tracking phytoplankton, providing an effective solution for phytoplankton monitoring.
Universal and Context-Independent Triggers for Precise Control of LLM Outputs
Liang, Jiashuo, Li, Guancheng, Yu, Yang
Large language models (LLMs) have been widely adopted in applications such as automated content generation and even critical decision-making systems. However, the risk of prompt injection allows for potential manipulation of LLM outputs. While numerous attack methods have been documented, achieving full control over these outputs remains challenging, often requiring experienced attackers to make multiple attempts and depending heavily on the prompt context. Recent advancements in gradient-based white-box attack techniques have shown promise in tasks like jailbreaks and system prompt leaks. Our research generalizes gradient-based attacks to find a trigger that is (1) Universal: effective irrespective of the target output; (2) Context-Independent: robust across diverse prompt contexts; and (3) Precise Output: capable of manipulating LLM inputs to yield any specified output with high accuracy. We propose a novel method to efficiently discover such triggers and assess the effectiveness of the proposed attack. Furthermore, we discuss the substantial threats posed by such attacks to LLM-based applications, highlighting the potential for adversaries to taking over the decisions and actions made by AI agents.