Goto

Collaborating Authors

 Yu, Jian


ClinicalBench: Can LLMs Beat Traditional ML Models in Clinical Prediction?

arXiv.org Artificial Intelligence

Large Language Models (LLMs) hold great promise to revolutionize current clinical systems for their superior capacities on medical text processing tasks and medical licensing exams. Meanwhile, traditional ML models such as SVM and XGBoost have still been mainly adopted in clinical prediction tasks. An emerging question is Can LLMs beat traditional ML models in clinical prediction? Thus, we build a new benchmark ClinicalBench to comprehensively study the clinical predictive modeling capacities of both general-purpose and medical LLMs, and compare them with traditional ML models. ClinicalBench embraces three common clinical prediction tasks, two databases, 14 general-purpose LLMs, 8 medical LLMs, and 11 traditional ML models. Through extensive empirical investigation, we discover that both general-purpose and medical LLMs, even with different model scales, diverse prompting or fine-tuning strategies, still cannot beat traditional ML models in clinical prediction yet, shedding light on their potential deficiency in clinical reasoning and decision-making. We call for caution when practitioners adopt LLMs in clinical applications. ClinicalBench can be utilized to bridge the gap between LLMs' development for healthcare and real-world clinical practice.


SS-Bench: A Benchmark for Social Story Generation and Evaluation

arXiv.org Artificial Intelligence

Children with Autism Spectrum Disorder (ASD) often misunderstand social situations and struggle to participate in daily routines. Psychology experts write Social Stories under strict constraints of structural clarity, descriptive orientation, and situational safety to enhance their abilities in these regimes. However, Social Stories are costly in creation and often limited in diversity and timeliness. As Large Language Models (LLMs) become increasingly powerful, there is a growing need for more automated, affordable, and accessible methods to generate Social Stories in real-time with broad coverage. Adapting LLMs to meet the unique and strict constraints of Social Stories is a challenging issue. To this end, we propose \textbf{SS-Bench}, a \textbf{S}ocial \textbf{S}tory \textbf{Bench}mark for generating and evaluating Social Stories. Specifically, we develop a constraint-driven strategy named \textbf{\textsc{StarSow}} to hierarchically prompt LLMs to generate Social Stories and build a benchmark, which has been validated through experiments to fine-tune smaller models for generating qualified Social Stories. Additionally, we introduce \textbf{Quality Assessment Criteria}, employed in human and GPT evaluations, to verify the effectiveness of the generated stories. We hope this work benefits the autism community and catalyzes future research focusing on particular groups.


Challenges in Binary Classification

arXiv.org Artificial Intelligence

Binary Classification plays an important role in machine learning. For linear classification, SVM is the optimal binary classification method. For nonlinear classification, the SVM algorithm needs to complete the classification task by using the kernel function. Although the SVM algorithm with kernel function is very effective, the selection of kernel function is empirical, which means that the kernel function may not be optimal. Therefore, it is worth studying how to obtain an optimal binary classifier. In this paper, the problem of finding the optimal binary classifier is considered as a variational problem. We design the objective function of this variational problem through the max-min problem of the (Euclidean) distance between two classes. For linear classification, it can be deduced that SVM is a special case of this variational problem framework. For Euclidean distance, it is proved that the proposed variational problem has some limitations for nonlinear classification. Therefore, how to design a more appropriate objective function to find the optimal binary classifier is still an open problem. Further, it's discussed some challenges and problems in finding the optimal classifier.


Windformer:Bi-Directional Long-Distance Spatio-Temporal Network For Wind Speed Prediction

arXiv.org Artificial Intelligence

Wind speed prediction is critical to the management of wind power generation. Due to the large range of wind speed fluctuations and wake effect, there may also be strong correlations between long-distance wind turbines. This difficult-to-extract feature has become a bottleneck for improving accuracy. History and future time information includes the trend of airflow changes, whether this dynamic information can be utilized will also affect the prediction effect. In response to the above problems, this paper proposes Windformer. First, Windformer divides the wind turbine cluster into multiple non-overlapping windows and calculates correlations inside the windows, then shifts the windows partially to provide connectivity between windows, and finally fuses multi-channel features based on detailed and global information. To dynamically model the change process of wind speed, this paper extracts time series in both history and future directions simultaneously. Compared with other current-advanced methods, the Mean Square Error (MSE) of Windformer is reduced by 0.5\% to 15\% on two datasets from NERL.


A meta learning scheme for fast accent domain expansion in Mandarin speech recognition

arXiv.org Artificial Intelligence

Spoken languages show significant variation across mandarin and accent. Despite the high performance of mandarin automatic speech recognition (ASR), accent ASR is still a challenge task. In this paper, we introduce meta-learning techniques for fast accent domain expansion in mandarin speech recognition, which expands the field of accents without deteriorating the performance of mandarin ASR. Meta-learning or learn-to-learn can learn general relation in multi domains not only for over-fitting a specific domain. So we select meta-learning in the domain expansion task. This more essential learning will cause improved performance on accent domain extension tasks. We combine the methods of meta learning and freeze of model parameters, which makes the recognition performance more stable in different cases and the training faster about 20%. Our approach significantly outperforms other methods about 3% relatively in the accent domain expansion task. Compared to the baseline model, it improves relatively 37% under the condition that the mandarin test set remains unchanged. In addition, it also proved this method to be effective on a large amount of data with a relative performance improvement of 4% on the accent test set.


A Pre-training Framework for Knowledge Graph Completion

arXiv.org Artificial Intelligence

Knowledge graph completion (KGC) is one of the effective methods to identify new facts in knowledge graph. Except for a few methods based on graph network, most of KGC methods trend to be trained based on independent triples, while are difficult to take a full account of the information of global network connection contained in knowledge network. To address these issues, in this study, we propose a simple and effective Network-based Pre-training framework for knowledge graph completion (termed NetPeace), which takes into account the information of global network connection and local triple relationships in knowledge graph. Experiments show that in NetPeace framework, multiple KGC models yields consistent and significant improvements on benchmarks (e.g., 36.45% Hits@1 and 27.40% MRR improvements for TuckER on FB15k-237), especially dense knowledge graph. On the challenging low-resource task, NetPeace that benefits from the global features of KG achieves higher performance (104.03% MRR and 143.89% Hit@1 improvements at most) than original models.


Knowledge Graph Completion based on Tensor Decomposition for Disease Gene Prediction

arXiv.org Artificial Intelligence

Accurate identification of disease genes has consistently been one of the keys to decoding a disease's molecular mechanism. Most current approaches focus on constructing biological networks and utilizing machine learning, especially, deep learning to identify disease genes, but ignore the complex relations between entities in the biological knowledge graph. In this paper, we construct a biological knowledge graph centered on diseases and genes, and develop an end-to-end Knowledge graph completion model for Disease Gene Prediction using interactional tensor decomposition (called KDGene). KDGene introduces an interaction module between the embeddings of entities and relations to tensor decomposition, which can effectively enhance the information interaction in biological knowledge. Experimental results show that KDGene significantly outperforms state-of-the-art algorithms. Furthermore, the comprehensive biological analysis of the case of diabetes mellitus confirms KDGene's ability for identifying new and accurate candidate genes. This work proposes a scalable knowledge graph completion framework to identify disease candidate genes, from which the results are promising to provide valuable references for further wet experiments.


Learning to Learn a Cold-start Sequential Recommender

arXiv.org Artificial Intelligence

National Lab of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China, School of Artificial Intelligence, University of Chinese Academy of Sciences, China, and Peng Cheng Laboratory, China The cold-start recommendation is an urgent problem in contemporary online applications. It aims to provide users whose behaviors are literally sparse with as accurate recommendations as possible. Many data-driven algorithms, such as the widely used matrix factorization, underperform because of data sparseness. This work adopts the idea of meta-learning to solve the user's cold-start recommendation problem. We propose a meta-learning based cold-start sequential recommendation framework called metaCSR, including three main components: Diffusion Representer for learning better user/item embedding through information diffusion on the interaction graph; Sequential Recommender for capturing temporal dependencies of behavior sequences; Meta Learner for extracting and propagating transferable knowledge of prior users and learning a good initialization for new users. The extensive quantitative experiments on three widely-used datasets show the remarkable performance of metaCSR in dealing with user cold-start problem. Meanwhile, a series of qualitative analysis demonstrates that the proposed metaCSR has good generalization. Recommendation systems (RS) intend to address the information explosion by finding a set of items for users to meet their personalized interests in many online applications, such as E-commerce websites [17], social networks [14], video-sharing sites [3] and news websites [36]. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Abstracting with credit is permitted.


Knowledge Graph-enhanced Sampling for Conversational Recommender System

arXiv.org Artificial Intelligence

The traditional recommendation systems mainly use offline user data to train offline models, and then recommend items for online users, thus suffering from the unreliable estimation of user preferences based on sparse and noisy historical data. Conversational Recommendation System (CRS) uses the interactive form of the dialogue systems to solve the intrinsic problems of traditional recommendation systems. However, due to the lack of contextual information modeling, the existing CRS models are unable to deal with the exploitation and exploration (E&E) problem well, resulting in the heavy burden on users. To address the aforementioned issue, this work proposes a contextual information enhancement model tailored for CRS, called Knowledge Graph-enhanced Sampling (KGenSam). KGenSam integrates the dynamic graph of user interaction data with the external knowledge into one heterogeneous Knowledge Graph (KG) as the contextual information environment. Then, two samplers are designed to enhance knowledge by sampling fuzzy samples with high uncertainty for obtaining user preferences and reliable negative samples for updating recommender to achieve efficient acquisition of user preferences and model updating, and thus provide a powerful solution for CRS to deal with E&E problem. Experimental results on two real-world datasets demonstrate the superiority of KGenSam with significant improvements over state-of-the-art methods.


Pre-training also Transfers Non-Robustness

arXiv.org Artificial Intelligence

Pre-training has enabled many state-of-the-art results on many tasks. In spite of its recognized contribution to generalization, we observed in this study that pre-training also transfers the non-robustness from pre-trained model into the fine-tuned model. Using image classification as an example, we first conducted experiments on various datasets and network backbones to explore the factors influencing robustness. Further analysis is conducted on examining the difference between the fine-tuned model and standard model to uncover the reason leading to the non-robustness transfer. Finally, we introduce a simple robust pre-training solution by regularizing the difference between target and source tasks. Results validate the effectiveness in alleviating non-robustness and preserving generalization.