Goto

Collaborating Authors

 Yu, Guo


GSGTrack: Gaussian Splatting-Guided Object Pose Tracking from RGB Videos

arXiv.org Artificial Intelligence

Tracking the 6DoF pose of unknown objects in monocular RGB video sequences is crucial for robotic manipulation. However, existing approaches typically rely on accurate depth information, which is non-trivial to obtain in real-world scenarios. Although depth estimation algorithms can be employed, geometric inaccuracy can lead to failures in RGBD-based pose tracking methods. To address this challenge, we introduce GSGTrack, a novel RGB-based pose tracking framework that jointly optimizes geometry and pose. Specifically, we adopt 3D Gaussian Splatting to create an optimizable 3D representation, which is learned simultaneously with a graph-based geometry optimization to capture the object's appearance features and refine its geometry. However, the joint optimization process is susceptible to perturbations from noisy pose and geometry data. Thus, we propose an object silhouette loss to address the issue of pixel-wise loss being overly sensitive to pose noise during tracking. To mitigate the geometric ambiguities caused by inaccurate depth information, we propose a geometry-consistent image pair selection strategy, which filters out low-confidence pairs and ensures robust geometric optimization. Extensive experiments on the OnePose and HO3D datasets demonstrate the effectiveness of GSGTrack in both 6DoF pose tracking and object reconstruction.


A convex formulation of covariate-adjusted Gaussian graphical models via natural parametrization

arXiv.org Machine Learning

Gaussian graphical models (GGMs) are widely used for recovering the conditional independence structure among random variables. Recently, several key advances have been made to exploit an additional set of variables for better estimating the GGMs of the variables of interest. For example, in co-expression quantitative trait locus (eQTL) studies, both the mean expression level of genes as well as their pairwise conditional independence structure may be adjusted by genetic variants local to those genes. Existing methods to estimate covariate-adjusted GGMs either allow only the mean to depend on covariates or suffer from poor scaling assumptions due to the inherent non-convexity of simultaneously estimating the mean and precision matrix. In this paper, we propose a convex formulation that jointly estimates the covariate-adjusted mean and precision matrix by utilizing the natural parametrization of the multivariate Gaussian likelihood. This convexity yields theoretically better performance as the sparsity and dimension of the covariates grow large relative to the number of samples. We verify our theoretical results with numerical simulations and perform a reanalysis of an eQTL study of glioblastoma multiforme (GBM), an aggressive form of brain cancer.


Pareto-wise Ranking Classifier for Multi-objective Evolutionary Neural Architecture Search

arXiv.org Artificial Intelligence

In the deployment of deep neural models, how to effectively and automatically find feasible deep models under diverse design objectives is fundamental. Most existing neural architecture search (NAS) methods utilize surrogates to predict the detailed performance (e.g., accuracy and model size) of a candidate architecture during the search, which however is complicated and inefficient. In contrast, we aim to learn an efficient Pareto classifier to simplify the search process of NAS by transforming the complex multi-objective NAS task into a simple Pareto-dominance classification task. To this end, we propose a classification-wise Pareto evolution approach for one-shot NAS, where an online classifier is trained to predict the dominance relationship between the candidate and constructed reference architectures, instead of using surrogates to fit the objective functions. The main contribution of this study is to change supernet adaption into a Pareto classifier. Besides, we design two adaptive schemes to select the reference set of architectures for constructing classification boundary and regulate the rate of positive samples over negative ones, respectively. We compare the proposed evolution approach with state-of-the-art approaches on widely-used benchmark datasets, and experimental results indicate that the proposed approach outperforms other approaches and have found a number of neural architectures with different model sizes ranging from 2M to 6M under diverse objectives and constraints.


One-Step Forward and Backtrack: Overcoming Zig-Zagging in Loss-Aware Quantization Training

arXiv.org Artificial Intelligence

Weight quantization is an effective technique to compress deep neural networks for their deployment on edge devices with limited resources. Traditional loss-aware quantization methods commonly use the quantized gradient to replace the full-precision gradient. However, we discover that the gradient error will lead to an unexpected zig-zagging-like issue in the gradient descent learning procedures, where the gradient directions rapidly oscillate or zig-zag, and such issue seriously slows down the model convergence. Accordingly, this paper proposes a one-step forward and backtrack way for loss-aware quantization to get more accurate and stable gradient direction to defy this issue. During the gradient descent learning, a one-step forward search is designed to find the trial gradient of the next-step, which is adopted to adjust the gradient of current step towards the direction of fast convergence. After that, we backtrack the current step to update the full-precision and quantized weights through the current-step gradient and the trial gradient. A series of theoretical analysis and experiments on benchmark deep models have demonstrated the effectiveness and competitiveness of the proposed method, and our method especially outperforms others on the convergence performance.


Knowledge-Assisted Dual-Stage Evolutionary Optimization of Large-Scale Crude Oil Scheduling

arXiv.org Artificial Intelligence

With the scaling up of crude oil scheduling in modern refineries, large-scale crude oil scheduling problems (LSCOSPs) emerge with thousands of binary variables and non-linear constraints, which are challenging to be optimized by traditional optimization methods. To solve LSCOSPs, we take the practical crude oil scheduling from a marine-access refinery as an example and start with modeling LSCOSPs from crude unloading, transportation, crude distillation unit processing, and inventory management of intermediate products. On the basis of the proposed model, a dual-stage evolutionary algorithm driven by heuristic rules (denoted by DSEA/HR) is developed, where the dual-stage search mechanism consists of global search and local refinement. In the global search stage, we devise several heuristic rules based on the empirical operating knowledge to generate a well-performing initial population and accelerate convergence in the mixed variables space. In the local refinement stage, a repair strategy is proposed to move the infeasible solutions towards feasible regions by further optimizing the local continuous variables. During the whole evolutionary process, the proposed dual-stage framework plays a crucial role in balancing exploration and exploitation. Experimental results have shown that DSEA/HR outperforms the state-of-the-art and widely-used mathematical programming methods and metaheuristic algorithms on LSCOSP instances within a reasonable time.


An Interpretable Hybrid Predictive Model of COVID-19 Cases using Autoregressive Model and LSTM

arXiv.org Artificial Intelligence

The Coronavirus Disease 2019 (COVID-19) has had a profound impact on global health and economy, making it crucial to build accurate and interpretable data-driven predictive models for COVID-19 cases to improve public policy making. The extremely large scale of the pandemic and the intrinsically changing transmission characteristics pose a great challenge for effectively predicting COVID-19 cases. To address this challenge, we propose a novel hybrid model in which the interpretability of the Autoregressive model (AR) and the predictive power of the long short-term memory neural networks (LSTM) join forces. The proposed hybrid model is formalized as a neural network with an architecture that connects two composing model blocks, of which the relative contribution is decided data-adaptively in the training procedure. We demonstrate the favorable performance of the hybrid model over its two single composing models as well as other popular predictive models through comprehensive numerical studies on two data sources under multiple evaluation metrics. Specifically, in county-level data of 8 California counties, our hybrid model achieves 4.173% MAPE, outperforming the composing AR (5.629%) and LSTM (4.934%) alone on average. In country-level datasets, our hybrid model outperforms the widely-used predictive models such as AR, LSTM, Support Vector Machines, Gradient Boosting, and Random Forest, in predicting the COVID-19 cases in Japan, Canada, Brazil, Argentina, Singapore, Italy, and the United Kingdom. In addition to the predictive performance, we illustrate the interpretability of our proposed hybrid model using the estimated AR component, which is a key feature that is not shared by most black-box predictive models for COVID-19 cases. Our study provides a new and promising direction for building effective and interpretable data-driven models for COVID-19 cases, which could have significant implications for public health policy making and control of the current COVID-19 and potential future pandemics.


Towards Fairness-Aware Multi-Objective Optimization

arXiv.org Artificial Intelligence

Recent years have seen the rapid development of fairness-aware machine learning in mitigating unfairness or discrimination in decision-making in a wide range of applications. However, much less attention has been paid to the fairness-aware multi-objective optimization, which is indeed commonly seen in real life, such as fair resource allocation problems and data driven multi-objective optimization problems. This paper aims to illuminate and broaden our understanding of multi-objective optimization from the perspective of fairness. To this end, we start with a discussion of user preferences in multi-objective optimization and then explore its relationship to fairness in machine learning and multi-objective optimization. Following the above discussions, representative cases of fairness-aware multiobjective optimization are presented, further elaborating the importance of fairness in traditional multi-objective optimization, data-driven optimization and federated optimization. Finally, challenges and opportunities in fairness-aware multi-objective optimization are addressed. We hope that this article makes a small step forward towards understanding fairness in the context of optimization and promote research interest in fairness-aware multi-objective optimization.


Tiny Adversarial Mulit-Objective Oneshot Neural Architecture Search

arXiv.org Artificial Intelligence

Due to limited computational cost and energy consumption, most neural network models deployed in mobile devices are tiny. However, tiny neural networks are commonly very vulnerable to attacks. Current research has proved that larger model size can improve robustness, but little research focuses on how to enhance the robustness of tiny neural networks. Our work focuses on how to improve the robustness of tiny neural networks without seriously deteriorating of clean accuracy under mobile-level resources. To this end, we propose a multi-objective oneshot network architecture search (NAS) algorithm to obtain the best trade-off networks in terms of the adversarial accuracy, the clean accuracy and the model size. Specifically, we design a novel search space based on new tiny blocks and channels to balance model size and adversarial performance. Moreover, since the supernet significantly affects the performance of subnets in our NAS algorithm, we reveal the insights into how the supernet helps to obtain the best subnet under white-box adversarial attacks. Concretely, we explore a new adversarial training paradigm by analyzing the adversarial transferability, the width of the supernet and the difference between training the subnets from scratch and fine-tuning. Finally, we make a statistical analysis for the layer-wise combination of certain blocks and channels on the first non-dominated front, which can serve as a guideline to design tiny neural network architectures for the resilience of adversarial perturbations.


Estimating the error variance in a high-dimensional linear model

arXiv.org Machine Learning

The lasso has been studied extensively as a tool for estimating the coefficient vector in the high-dimensional linear model; however, considerably less is known about estimating the error variance. Indeed, most well-known theoretical properties of the lasso, including recent advances in selective inference with the lasso, are established under the assumption that the underlying error variance is known. Yet the error variance in practice is, of course, unknown. In this paper, we propose the natural lasso estimator for the error variance, which maximizes a penalized likelihood objective. A key aspect of the natural lasso is that the likelihood is expressed in terms of the natural parameterization of the multiparameter exponential family of a Gaussian with unknown mean and variance. The result is a remarkably simple estimator with provably good performance in terms of mean squared error. These theoretical results do not require placing any assumptions on the design matrix or the true regression coefficients. We also propose a companion estimator, called the organic lasso, which theoretically does not require tuning of the regularization parameter. Both estimators do well compared to preexisting methods, especially in settings where successful recovery of the true support of the coefficient vector is hard.


Learning Local Dependence In Ordered Data

arXiv.org Machine Learning

In many applications, data come with a natural ordering. This ordering can often induce local dependence among nearby variables. However, in complex data, the width of this dependence may vary, making simple assumptions such as a constant neighborhood size unrealistic. We propose a framework for learning this local dependence based on estimating the inverse of the Cholesky factor of the covariance matrix. Penalized maximum likelihood estimation of this matrix yields a simple regression interpretation for local dependence in which variables are predicted by their neighbors. Our proposed method involves solving a convex, penalized Gaussian likelihood problem with a hierarchical group lasso penalty. The problem decomposes into independent subproblems which can be solved efficiently in parallel using first-order methods. Our method yields a sparse, symmetric, positive definite estimator of the precision matrix, encoding a Gaussian graphical model. We derive theoretical results not found in existing methods attaining this structure. In particular, our conditions for signed support recovery and estimation consistency rates in multiple norms are as mild as those in a regression problem. Empirical results show our method performing favorably compared to existing methods. We apply our method to genomic data to flexibly model linkage disequilibrium. Our method is also applied to improve the performance of discriminant analysis in sound recording classification.