Goto

Collaborating Authors

 Yu, Felix


LoRA Done RITE: Robust Invariant Transformation Equilibration for LoRA Optimization

arXiv.org Artificial Intelligence

Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method for LLM that reduces memory requirements. However, current LoRA optimizers lack transformation invariance, meaning the actual updates to the weights depends on how the two LoRA factors are scaled or rotated. This deficiency leads to inefficient learning and sub-optimal solutions in practice. This paper introduces LoRA-RITE, a novel adaptive matrix preconditioning method for LoRA optimization, which can achieve transformation invariance and remain computationally efficient. We provide theoretical analysis to demonstrate the benefit of our method and conduct experiments on various LLM tasks with different models including Gemma 2B, 7B, and mT5-XXL. The results demonstrate consistent improvements against existing optimizers. For example, replacing Adam with LoRA-RITE during LoRA fine-tuning of Gemma-2B yielded 4.6\% accuracy gain on Super-Natural Instructions and 3.5\% accuracy gain across other four LLM benchmarks (HellaSwag, ArcChallenge, GSM8K, OpenBookQA).


Efficient Document Ranking with Learnable Late Interactions

arXiv.org Machine Learning

Cross-Encoder (CE) and Dual-Encoder (DE) models are two fundamental approaches for query-document relevance in information retrieval. To predict relevance, CE models use joint query-document embeddings, while DE models maintain factorized query and document embeddings; usually, the former has higher quality while the latter benefits from lower latency. Recently, late-interaction models have been proposed to realize more favorable latency-quality tradeoffs, by using a DE structure followed by a lightweight scorer based on query and document token embeddings. However, these lightweight scorers are often hand-crafted, and there is no understanding of their approximation power; further, such scorers require access to individual document token embeddings, which imposes an increased latency and storage burden. In this paper, we propose novel learnable late-interaction models (LITE) that resolve these issues. Theoretically, we prove that LITE is a universal approximator of continuous scoring functions, even for relatively small embedding dimension. Empirically, LITE outperforms previous late-interaction models such as ColBERT on both in-domain and zero-shot re-ranking tasks. For instance, experiments on MS MARCO passage re-ranking show that LITE not only yields a model with better generalization, but also lowers latency and requires 0.25x storage compared to ColBERT.


Metric-aware LLM inference for regression and scoring

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated strong results on a range of NLP tasks. Typically, outputs are obtained via autoregressive sampling from the LLM's underlying distribution. Building on prior work on Minimum Bayes Risk decoding, we show that this inference strategy can be suboptimal for a range of regression and scoring tasks, and associated evaluation metrics. As a remedy, we propose metric aware LLM inference: a decision theoretic approach optimizing for custom regression and scoring metrics at inference time. We report improvements over baselines on academic benchmarks and publicly available models.


SpecTr: Fast Speculative Decoding via Optimal Transport

arXiv.org Artificial Intelligence

Autoregressive sampling from large language models has led to state-of-the-art results in several natural language tasks. However, autoregressive sampling generates tokens one at a time making it slow, and even prohibitive in certain tasks. One way to speed up sampling is $\textit{speculative decoding}$: use a small model to sample a $\textit{draft}$ (block or sequence of tokens), and then score all tokens in the draft by the large language model in parallel. A subset of the tokens in the draft are accepted (and the rest rejected) based on a statistical method to guarantee that the final output follows the distribution of the large model. In this work, we provide a principled understanding of speculative decoding through the lens of optimal transport (OT) with $\textit{membership cost}$. This framework can be viewed as an extension of the well-known $\textit{maximal-coupling}$ problem. This new formulation enables us to generalize the speculative decoding method to allow for a set of $k$ candidates at the token-level, which leads to an improved optimal membership cost. We show that the optimal draft selection algorithm (transport plan) can be computed via linear programming, whose best-known runtime is exponential in $k$. We then propose a valid draft selection algorithm whose acceptance probability is $(1-1/e)$-optimal multiplicatively. Moreover, it can be computed in time almost linear with size of domain of a single token. Using this $new draft selection$ algorithm, we develop a new autoregressive sampling algorithm called $\textit{SpecTr}$, which provides speedup in decoding while ensuring that there is no quality degradation in the decoded output. We experimentally demonstrate that for state-of-the-art large language models, the proposed approach achieves a wall clock speedup of 2.13X, a further 1.37X speedup over speculative decoding on standard benchmarks.


ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent

arXiv.org Artificial Intelligence

Answering complex natural language questions often necessitates multi-step reasoning and integrating external information. Several systems have combined knowledge retrieval with a large language model (LLM) to answer such questions. These systems, however, suffer from various failure cases, and we cannot directly train them end-to-end to fix such failures, as interaction with external knowledge is non-differentiable. To address these deficiencies, we define a ReAct-style LLM agent with the ability to reason and act upon external knowledge. We further refine the agent through a ReST-like method that iteratively trains on previous trajectories, employing growing-batch reinforcement learning with AI feedback for continuous self-improvement and self-distillation. Starting from a prompted large model and after just two iterations of the algorithm, we can produce a fine-tuned small model that achieves comparable performance on challenging compositional question-answering benchmarks with two orders of magnitude fewer parameters.


Two-stage LLM Fine-tuning with Less Specialization and More Generalization

arXiv.org Artificial Intelligence

Pretrained large language models (LLMs) are general purpose problem solvers applicable to a diverse set of tasks with prompts. They can be further improved towards a specific task by fine-tuning on a specialized dataset. However, fine-tuning usually makes the model narrowly specialized on this dataset with reduced general in-context learning performances, which is undesirable whenever the fine-tuned model needs to handle additional tasks where no fine-tuning data is available. In this work, we first demonstrate that fine-tuning on a single task indeed decreases LLMs' general in-context learning performance. We discover one important cause of such forgetting, format specialization, where the model overfits to the format of the fine-tuned task. We further show that format specialization happens at the very beginning of fine-tuning. To solve this problem, we propose Prompt Tuning with MOdel Tuning (ProMoT), a simple yet effective two-stage fine-tuning framework that reduces format specialization and improves generalization. ProMoT offloads task-specific format learning into additional and removable parameters by first doing prompt tuning and then fine-tuning the model itself with this soft prompt attached. With experiments on several fine-tuning tasks and 8 in-context evaluation tasks, we show that ProMoT achieves comparable performance on fine-tuned tasks to standard fine-tuning, but with much less loss of in-context learning performances across a board range of out-of-domain evaluation tasks. More importantly, ProMoT can even enhance generalization on in-context learning tasks that are semantically related to the fine-tuned task, e.g. ProMoT on En-Fr translation significantly improves performance on other language pairs, and ProMoT on NLI improves performance on summarization. Experiments also show that ProMoT can improve the generalization performance of multi-task training.


The Lazy Neuron Phenomenon: On Emergence of Activation Sparsity in Transformers

arXiv.org Artificial Intelligence

This paper studies the curious phenomenon for machine learning models with Transformer architectures that their activation maps are sparse. By activation map we refer to the intermediate output of the multi-layer perceptrons (MLPs) after a ReLU activation function, and by sparse we mean that on average very few entries (e.g., 3.0% for T5-Base and 6.3% for ViT-B16) are nonzero for each input to MLP. Moreover, larger Transformers with more layers and wider MLP hidden dimensions are sparser as measured by the percentage of nonzero entries. Through extensive experiments we demonstrate that the emergence of sparsity is a prevalent phenomenon that occurs for both natural language processing and vision tasks, on both training and evaluation data, for Transformers of various configurations, at layers of all depth levels, as well as for other architectures including MLP-mixers and 2-layer MLPs. We show that sparsity also emerges using training datasets with random labels, or with random inputs, or with infinite amount of data, demonstrating that sparsity is not a result of a specific family of datasets. We discuss how sparsity immediately implies a way to significantly reduce the FLOP count and improve efficiency for Transformers. Moreover, we demonstrate perhaps surprisingly that enforcing an even sparser activation via Top-k thresholding with a small value of k brings a collection of desired but missing properties for Transformers, namely less sensitivity to noisy training data, more robustness to input corruptions, and better calibration for their prediction confidence.


FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning

arXiv.org Artificial Intelligence

Federated learning~(FL) has recently attracted increasing attention from academia and industry, with the ultimate goal of achieving collaborative training under privacy and communication constraints. Existing iterative model averaging based FL algorithms require a large number of communication rounds to obtain a well-performed model due to extremely unbalanced and non-i.i.d data partitioning among different clients. Thus, we propose FedDM to build the global training objective from multiple local surrogate functions, which enables the server to gain a more global view of the loss landscape. In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data through distribution matching. FedDM reduces communication rounds and improves model quality by transmitting more informative and smaller synthesized data compared with unwieldy model weights. We conduct extensive experiments on three image classification datasets, and results show that our method can outperform other FL counterparts in terms of efficiency and model performance. Moreover, we demonstrate that FedDM can be adapted to preserve differential privacy with Gaussian mechanism and train a better model under the same privacy budget.


Self-supervised Learning for Large-scale Item Recommendations

arXiv.org Machine Learning

Large scale recommender models find most relevant items from huge catalogs, and they play a critical role in modern search and recommendation systems. To model the input space with large-vocab categorical features, a typical recommender model learns a joint embedding space through neural networks for both queries and items from user feedback data. However, with millions to billions of items, the power-law user feedback makes labels very sparse for a large amount of long-tail items. Inspired by the recent success in self-supervised representation learning research in both computer vision and natural language understanding, we propose a multi-task self-supervised learning (SSL) framework for large-scale item recommendations. The framework is designed to tackle the label sparsity problem by learning more robust item representations. Furthermore, we propose two self-supervised tasks applicable to models with categorical features within the proposed framework: (i) Feature Masking (FM) and (ii) Feature Dropout (FD). We evaluate our framework using two large-scale datasets with 500M and 1B training examples respectively. Our results demonstrate that the proposed framework outperforms traditional supervised learning only models and state-of-the-art regularization techniques in the context of item recommendations. The SSL framework shows larger improvement with less supervision compared to the counterparts. We also apply the proposed techniques to a web-scale commercial app-to-app recommendation system, and significantly improve top-tier business metrics via A/B experiments on live traffic. Our online results also verify our hypothesis that our framework indeed improves model performance on slices that lack supervision.


Learning discrete distributions: user vs item-level privacy

arXiv.org Machine Learning

Much of the literature on differential privacy focuses on item-level privacy, where loosely speaking, the goal is to provide privacy per item or training example. However, recently many practical applications such as federated learning require preserving privacy for all items of a single user, which is much harder to achieve. Therefore understanding the theoretical limit of user-level privacy becomes crucial. We study the fundamental problem of learning discrete distributions over $k$ symbols with user-level differential privacy. If each user has $m$ samples, we show that straightforward applications of Laplace or Gaussian mechanisms require the number of users to be $\mathcal{O}(k/(m\alpha^2) + k/\epsilon\alpha)$ to achieve an $\ell_1$ distance of $\alpha$ between the true and estimated distributions, with the privacy-induced penalty $k/\epsilon\alpha$ independent of the number of samples per user $m$. Moreover, we show that any mechanism that only operates on the final aggregate should require a user complexity of the same order. We then propose a mechanism such that the number of users scales as $\tilde{\mathcal{O}}(k/(m\alpha^2) + k/\sqrt{m}\epsilon\alpha)$ and further show that it is nearly-optimal under certain regimes. Thus the privacy penalty is $\mathcal{O}(\sqrt{m})$ times smaller compared to the standard mechanisms. We also propose general techniques for obtaining lower bounds on restricted differentially private estimators and a lower bound on the total variation between binomial distributions, both of which might be of independent interest.