Goto

Collaborating Authors

 Yu, Chao


Multi-Robot System for Cooperative Exploration in Unknown Environments: A Survey

arXiv.org Artificial Intelligence

With the advancement of multi-robot technology, cooperative exploration tasks have garnered increasing attention. This paper presents a comprehensive review of multi-robot cooperative exploration systems. First, we review the evolution of robotic exploration and introduce a modular research framework tailored for multi-robot cooperative exploration. Based on this framework, we systematically categorize and summarize key system components. As a foundational module for multi-robot exploration, the localization and mapping module is primarily introduced by focusing on global and relative pose estimation, as well as multi-robot map merging techniques. The cooperative motion module is further divided into learning-based approaches and multi-stage planning, with the latter encompassing target generation, task allocation, and motion planning strategies. Given the communication constraints of real-world environments, we also analyze the communication module, emphasizing how robots exchange information within local communication ranges and under limited transmission capabilities. Finally, we discuss the challenges and future research directions for multi-robot cooperative exploration in light of real-world trends. This review aims to serve as a valuable reference for researchers and practitioners in the field.


Policy-to-Language: Train LLMs to Explain Decisions with Flow-Matching Generated Rewards

arXiv.org Artificial Intelligence

As humans increasingly share environments with diverse agents powered by RL, LLMs, and beyond, the ability to explain their policies in natural language will be vital for reliable coexistence. In this paper, we build a model-agnostic explanation generator based on an LLM. The technical novelty is that the rewards for training this LLM are generated by a generative flow matching model. This model has a specially designed structure with a hidden layer merged with an LLM to harness the linguistic cues of explanations into generating appropriate rewards. Experiments on both RL and LLM tasks demonstrate that our method can generate dense and effective rewards while saving on expensive human feedback; it thus enables effective explanations and even improves the accuracy of the decisions in original tasks.


VolleyBots: A Testbed for Multi-Drone Volleyball Game Combining Motion Control and Strategic Play

arXiv.org Artificial Intelligence

Multi-agent reinforcement learning (MARL) has made significant progress, largely fueled by the development of specialized testbeds that enable systematic evaluation of algorithms in controlled yet challenging scenarios. However, existing testbeds often focus on purely virtual simulations or limited robot morphologies such as robotic arms, quadrupeds, and humanoids, leaving high-mobility platforms with real-world physical constraints like drones underexplored. To bridge this gap, we present VolleyBots, a new MARL testbed where multiple drones cooperate and compete in the sport of volleyball under physical dynamics. VolleyBots features a turn-based interaction model under volleyball rules, a hierarchical decision-making process that combines motion control and strategic play, and a high-fidelity simulation for seamless sim-to-real transfer. We provide a comprehensive suite of tasks ranging from single-drone drills to multi-drone cooperative and competitive tasks, accompanied by baseline evaluations of representative MARL and game-theoretic algorithms. Results in simulation show that while existing algorithms handle simple tasks effectively, they encounter difficulty in complex tasks that require both low-level control and high-level strategy. We further demonstrate zero-shot deployment of a simulation-learned policy to real-world drones, highlighting VolleyBots' potential to propel MARL research involving agile robotic platforms. The project page is at https://sites.google.com/view/thu-volleybots/home.


Learning Strategic Language Agents in the Werewolf Game with Iterative Latent Space Policy Optimization

arXiv.org Artificial Intelligence

Large language model (LLM)-based agents have recently shown impressive progress in a variety of domains, including open-ended conversation and multi-step decision-making. However, applying these agents to social deduction games such as Werewolf, which requires both strategic decision-making and free-form language interaction, remains non-trivial. Traditional methods based on Counterfactual Regret Minimization (CFR) or reinforcement learning (RL) typically depend on a predefined action space, making them unsuitable for language games with unconstrained text action space. Meanwhile, pure LLM-based agents often suffer from intrinsic biases and require prohibitively large datasets for fine-tuning. We propose Latent Space Policy Optimization (LSPO), an iterative framework that addresses these challenges by first mapping free-form text to a discrete latent space, where methods like CFR and RL can learn strategic policy more effectively. We then translate the learned policy back into natural language dialogues, which are used to fine-tune an LLM via Direct Preference Optimization (DPO). By iteratively alternating between these stages, our LSPO agent progressively enhances both strategic reasoning and language communication. Experiment results on the Werewolf game show that our method improves the agent's performance in each iteration and outperforms existing Werewolf agents, underscoring its promise for free-form language decision-making.


Learning from Suboptimal Data in Continuous Control via Auto-Regressive Soft Q-Network

arXiv.org Artificial Intelligence

Reinforcement learning (RL) for continuous control often requires large amounts of online interaction data. Value-based RL methods can mitigate this burden by offering relatively high sample efficiency. Some studies further enhance sample efficiency by incorporating offline demonstration data to "kick-start" training, achieving promising results in continuous control. However, they typically compute the Q-function independently for each action dimension, neglecting interdependencies and making it harder to identify optimal actions when learning from suboptimal data, such as non-expert demonstration and online-collected data during the training process. To address these issues, we propose Auto-Regressive Soft Q-learning (ARSQ), a value-based RL algorithm that models Q-values in a coarse-to-fine, auto-regressive manner. First, ARSQ decomposes the continuous action space into discrete spaces in a coarse-to-fine hierarchy, enhancing sample efficiency for fine-grained continuous control tasks. Next, it auto-regressively predicts dimensional action advantages within each decision step, enabling more effective decision-making in continuous control tasks. We evaluate ARSQ on two continuous control benchmarks, RLBench and D4RL, integrating demonstration data into online training. On D4RL, which includes non-expert demonstrations, ARSQ achieves an average $1.62\times$ performance improvement over SOTA value-based baseline. On RLBench, which incorporates expert demonstrations, ARSQ surpasses various baselines, demonstrating its effectiveness in learning from suboptimal online-collected data.


Rapid Learning in Constrained Minimax Games with Negative Momentum

arXiv.org Artificial Intelligence

In this paper, we delve into the utilization of the negative momentum technique in constrained minimax games. From an intuitive mechanical standpoint, we introduce a novel framework for momentum buffer updating, which extends the findings of negative momentum from the unconstrained setting to the constrained setting and provides a universal enhancement to the classic game-solver algorithms. Additionally, we provide theoretical guarantee of convergence for our momentum-augmented algorithms with entropy regularizer. We then extend these algorithms to their extensive-form counterparts. Experimental results on both Normal Form Games (NFGs) and Extensive Form Games (EFGs) demonstrate that our momentum techniques can significantly improve algorithm performance, surpassing both their original versions and the SOTA baselines by a large margin.


Hierarchical Multi-agent Meta-Reinforcement Learning for Cross-channel Bidding

arXiv.org Artificial Intelligence

Real-time bidding (RTB) plays a pivotal role in online advertising ecosystems. Advertisers employ strategic bidding to optimize their advertising impact while adhering to various financial constraints, such as the return-on-investment (ROI) and cost-per-click (CPC). Primarily focusing on bidding with fixed budget constraints, traditional approaches cannot effectively manage the dynamic budget allocation problem where the goal is to achieve global optimization of bidding performance across multiple channels with a shared budget. In this paper, we propose a hierarchical multi-agent reinforcement learning framework for multi-channel bidding optimization. In this framework, the top-level strategy applies a CPC constrained diffusion model to dynamically allocate budgets among the channels according to their distinct features and complex interdependencies, while the bottom-level strategy adopts a state-action decoupled actor-critic method to address the problem of extrapolation errors in offline learning caused by out-of-distribution actions and a context-based meta-channel knowledge learning method to improve the state representation capability of the policy based on the shared knowledge among different channels. Comprehensive experiments conducted on a large scale real-world industrial dataset from the Meituan ad bidding platform demonstrate that our method achieves a state-of-the-art performance.


What Matters in Learning A Zero-Shot Sim-to-Real RL Policy for Quadrotor Control? A Comprehensive Study

arXiv.org Artificial Intelligence

Executing precise and agile flight maneuvers is critical for quadrotors in various applications. Traditional quadrotor control approaches are limited by their reliance on flat trajectories or time-consuming optimization, which restricts their flexibility. Recently, RL-based policy has emerged as a promising alternative due to its ability to directly map observations to actions, reducing the need for detailed system knowledge and actuation constraints. However, a significant challenge remains in bridging the sim-to-real gap, where RL-based policies often experience instability when deployed in real world. In this paper, we investigate key factors for learning robust RL-based control policies that are capable of zero-shot deployment in real-world quadrotors. We identify five critical factors and we develop a PPO-based training framework named SimpleFlight, which integrates these five techniques. We validate the efficacy of SimpleFlight on Crazyflie quadrotor, demonstrating that it achieves more than a 50% reduction in trajectory tracking error compared to state-of-the-art RL baselines. The policy derived by SimpleFlight consistently excels across both smooth polynominal trajectories and challenging infeasible zigzag trajectories on small thrust-to-weight quadrotors. In contrast, baseline methods struggle with high-speed or infeasible trajectories. To support further research and reproducibility, we integrate SimpleFlight into a GPU-based simulator Omnidrones and provide open-source access to the code and model checkpoints. We hope SimpleFlight will offer valuable insights for advancing RL-based quadrotor control. For more details, visit our project website at https://sites.google.com/view/simpleflight/.


Offline Multi-Agent Reinforcement Learning via In-Sample Sequential Policy Optimization

arXiv.org Artificial Intelligence

Offline Multi-Agent Reinforcement Learning (MARL) is an emerging field that aims to learn optimal multi-agent policies from pre-collected datasets. Compared to single-agent case, multi-agent setting involves a large joint state-action space and coupled behaviors of multiple agents, which bring extra complexity to offline policy optimization. In this work, we revisit the existing offline MARL methods and show that in certain scenarios they can be problematic, leading to uncoordinated behaviors and out-of-distribution (OOD) joint actions. To address these issues, we propose a new offline MARL algorithm, named In-Sample Sequential Policy Optimization (InSPO). InSPO sequentially updates each agent's policy in an in-sample manner, which not only avoids selecting OOD joint actions but also carefully considers teammates' updated policies to enhance coordination. Additionally, by thoroughly exploring low-probability actions in the behavior policy, InSPO can well address the issue of premature convergence to sub-optimal solutions. Theoretically, we prove InSPO guarantees monotonic policy improvement and converges to quantal response equilibrium (QRE). Experimental results demonstrate the effectiveness of our method compared to current state-of-the-art offline MARL methods.


Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback

arXiv.org Artificial Intelligence

Accurate motion control in the face of disturbances within complex environments remains a major challenge in robotics. Classical model-based approaches often struggle with nonlinearities and unstructured disturbances, while RL-based methods can be fragile when encountering unseen scenarios. In this paper, we propose a novel framework, Neural Internal Model Control, which integrates model-based control with RL-based control to enhance robustness. Our framework streamlines the predictive model by applying Newton-Euler equations for rigid-body dynamics, eliminating the need to capture complex high-dimensional nonlinearities. This internal model combines model-free RL algorithms with predictive error feedback. Such a design enables a closed-loop control structure to enhance the robustness and generalizability of the control system. We demonstrate the effectiveness of our framework on both quadrotors and quadrupedal robots, achieving superior performance compared to state-of-the-art methods. Furthermore, real-world deployment on a quadrotor with rope-suspended payloads highlights the framework's robustness in sim-to-real transfer. Our code is released at https://github.com/thu-uav/NeuralIMC.