Yoshie, Osamu
R1-T1: Fully Incentivizing Translation Capability in LLMs via Reasoning Learning
He, Minggui, Liu, Yilun, Tao, Shimin, Luo, Yuanchang, Zeng, Hongyong, Su, Chang, Zhang, Li, Ma, Hongxia, Wei, Daimeng, Meng, Weibin, Yang, Hao, Chen, Boxing, Yoshie, Osamu
Despite recent breakthroughs in reasoning-enhanced large language models (LLMs) like DeepSeek-R1, incorporating inference-time reasoning into machine translation (MT), where human translators naturally employ structured, multi-layered reasoning chain-of-thoughts (CoTs), is yet underexplored. Existing methods either design a fixed CoT tailored for a specific MT sub-task (e.g., literature translation), or rely on synthesizing CoTs unaligned with humans, limiting their adaptability to diverse translation scenarios. This paper introduces R1-Translator (R1-T1), a novel framework to achieve inference-time reasoning for general MT via reinforcement learning (RL) with human-aligned CoTs comprising six common patterns. Our approach pioneers three innovations: (1) extending reasoning-based translation beyond MT sub-tasks to six languages and diverse tasks (e.g., legal/medical domain adaptation, idiom resolution); (2) formalizing six expert-curated CoT templates that mirror hybrid human strategies like context-aware paraphrasing and back translation; and (3) enabling self-evolving CoT discovery through RL. Experimental results indicate a steady translation performance improvement in 11 languages and 40 translation directions on Flores-101 test set, especially on the languages unseen from training.
RoboMatrix: A Skill-centric Hierarchical Framework for Scalable Robot Task Planning and Execution in Open-World
Mao, Weixin, Zhong, Weiheng, Jiang, Zhou, Fang, Dong, Zhang, Zhongyue, Lan, Zihan, Jia, Fan, Wang, Tiancai, Fan, Haoqiang, Yoshie, Osamu
Existing policy learning methods predominantly adopt the task-centric paradigm, necessitating the collection of task data in an end-to-end manner. Consequently, the learned policy tends to fail to tackle novel tasks. Moreover, it is hard to localize the errors for a complex task with multiple stages due to end-to-end learning. To address these challenges, we propose RoboMatrix, a skill-centric and hierarchical framework for scalable task planning and execution. We first introduce a novel skill-centric paradigm that extracts the common meta-skills from different complex tasks. This allows for the capture of embodied demonstrations through a skill-centric approach, enabling the completion of open-world tasks by combining learned meta-skills. To fully leverage meta-skills, we further develop a hierarchical framework that decouples complex robot tasks into three interconnected layers: (1) a high-level modular scheduling layer; (2) a middle-level skill layer; and (3) a low-level hardware layer. Experimental results illustrate that our skill-centric and hierarchical framework achieves remarkable generalization performance across novel objects, scenes, tasks, and embodiments. This framework offers a novel solution for robot task planning and execution in open-world scenarios. Our software and hardware are available at https://github.com/WayneMao/RoboMatrix.
MM-Instruct: Generated Visual Instructions for Large Multimodal Model Alignment
Liu, Jihao, Huang, Xin, Zheng, Jinliang, Liu, Boxiao, Wang, Jia, Yoshie, Osamu, Liu, Yu, Li, Hongsheng
This paper introduces MM-Instruct, a large-scale dataset of diverse and high-quality visual instruction data designed to enhance the instruction-following capabilities of large multimodal models (LMMs). While existing visual instruction datasets often focus on question-answering, they struggle to generalize to broader application scenarios such as creative writing, summarization, or image analysis. To address these limitations, we propose a novel approach to constructing MM-Instruct that leverages the strong instruction-following capabilities of existing LLMs to generate novel visual instruction data from large-scale but conventional image captioning datasets. MM-Instruct first leverages ChatGPT to automatically generate diverse instructions from a small set of seed instructions through augmenting and summarization. It then matches these instructions with images and uses an open-sourced large language model (LLM) to generate coherent answers to the instruction-image pairs. The LLM is grounded by the detailed text descriptions of images in the whole answer generation process to guarantee the alignment of the instruction data. Moreover, we introduce a benchmark based on the generated instruction data to evaluate the instruction-following capabilities of existing LMMs. We demonstrate the effectiveness of MM-Instruct by training a LLaVA-1.5 model on the generated data, denoted as LLaVA-Instruct, which exhibits significant improvements in instruction-following capabilities compared to LLaVA-1.5 models.
BreakGPT: A Large Language Model with Multi-stage Structure for Financial Breakout Detection
Zhang, Kang, Yoshie, Osamu, Huang, Weiran
Trading range breakout (TRB) is a key method in the technical analysis of financial trading, widely employed by traders in financial markets such as stocks, futures, and foreign exchange. However, distinguishing between true and false breakout and providing the correct rationale cause significant challenges to investors. Recently, large language models have achieved success in various downstream applications, but their effectiveness in the domain of financial breakout detection has been subpar. The reason is that the unique data and specific knowledge are required in breakout detection. To address these issues, we introduce BreakGPT, the first large language model for financial breakout detection. Furthermore, we have developed a novel framework for large language models, namely multi-stage structure, effectively reducing mistakes in downstream applications. Experimental results indicate that compared to GPT-3.5, BreakGPT improves the accuracy of answers and rational by 44%, with the multi-stage structure contributing 17.6% to the improvement. Additionally, it outperforms ChatGPT-4 by 42.07%. Our Code is publicly available: https://github.com/Neviim96/BreakGPT
PillarNeSt: Embracing Backbone Scaling and Pretraining for Pillar-based 3D Object Detection
Mao, Weixin, Wang, Tiancai, Zhang, Diankun, Yan, Junjie, Yoshie, Osamu
This paper shows the effectiveness of 2D backbone scaling and pretraining for pillar-based 3D object detectors. Pillar-based methods mainly employ randomly initialized 2D convolution neural network (ConvNet) for feature extraction and fail to enjoy the benefits from the backbone scaling and pretraining in the image domain. To show the scaling-up capacity in point clouds, we introduce the dense ConvNet pretrained on large-scale image datasets (e.g., ImageNet) as the 2D backbone of pillar-based detectors. The ConvNets are adaptively designed based on the model size according to the specific features of point clouds, such as sparsity and irregularity. Equipped with the pretrained ConvNets, our proposed pillar-based detector, termed PillarNeSt, outperforms the existing 3D object detectors by a large margin on the nuScenes and Argoversev2 datasets. Our code shall be released upon acceptance.
GMM: Delving into Gradient Aware and Model Perceive Depth Mining for Monocular 3D Detection
Mao, Weixin, Yang, Jinrong, Ge, Zheng, Song, Lin, Zhou, Hongyu, Mao, Tiezheng, Li, Zeming, Yoshie, Osamu
Depth perception is a crucial component of monoc-ular 3D detection tasks that typically involve ill-posed problems. In light of the success of sample mining techniques in 2D object detection, we propose a simple yet effective mining strategy for improving depth perception in 3D object detection. Concretely, we introduce a plain metric to evaluate the quality of depth predictions, which chooses the mined sample for the model. Moreover, we propose a Gradient-aware and Model-perceive Mining strategy (GMM) for depth learning, which exploits the predicted depth quality for better depth learning through easy mining. GMM is a general strategy that can be readily applied to several state-of-the-art monocular 3D detectors, improving the accuracy of depth prediction. Extensive experiments on the nuScenes dataset demonstrate that the proposed methods significantly improve the performance of 3D object detection while outperforming other state-of-the-art sample mining techniques by a considerable margin. On the nuScenes benchmark, GMM achieved the state-of-the-art (42.1% mAP and 47.3% NDS) performance in monocular object detection.
Vision Learners Meet Web Image-Text Pairs
Zhao, Bingchen, Cui, Quan, Wu, Hao, Yoshie, Osamu, Yang, Cheng, Mac Aodha, Oisin
Most recent self-supervised learning methods are pre-trained on the well-curated ImageNet-1K dataset. In this work, given the excellent scalability of web data, we consider self-supervised pre-training on noisy web sourced image-text paired data. First, we conduct a benchmark study of representative self-supervised pre-training methods on large-scale web data in a like-for-like setting. We compare a range of methods, including single-modal ones that use masked training objectives and multi-modal ones that use image-text constrastive training. We observe that existing multi-modal methods do not outperform their single-modal counterparts on vision transfer learning tasks. We derive an information-theoretical view to explain these benchmark results, which provides insight into how to design a novel vision learner. Inspired by this insight, we present a new visual representation pre-training method, MUlti-modal Generator~(MUG), that learns from scalable web sourced image-text data. MUG achieves state-of-the-art transfer performance on a variety of tasks and demonstrates promising scaling properties. Pre-trained models and code will be made public upon acceptance.
Discriminability-Transferability Trade-Off: An Information-Theoretic Perspective
Cui, Quan, Zhao, Bingchen, Chen, Zhao-Min, Zhao, Borui, Song, Renjie, Liang, Jiajun, Zhou, Boyan, Yoshie, Osamu
This work simultaneously considers the discriminability and transferability properties of deep representations in the typical supervised learning task, i.e., image classification. By a comprehensive temporal analysis, we observe a trade-off between these two properties. The discriminability keeps increasing with the training progressing while the transferability intensely diminishes in the later training period. From the perspective of information-bottleneck theory, we reveal that the incompatibility between discriminability and transferability is attributed to the over-compression of input information. More importantly, we investigate why and how the InfoNCE loss can alleviate the over-compression, and further present a learning framework, named contrastive temporal coding~(CTC), to counteract the over-compression and alleviate the incompatibility. Extensive experiments validate that CTC successfully mitigates the incompatibility, yielding discriminative and transferable representations. Noticeable improvements are achieved on the image classification task and challenging transfer learning tasks. We hope that this work will raise the significance of the transferability property in the conventional supervised learning setting. Code is available at https://github.com/DTennant/dt-tradeoff.
A new multilayer optical film optimal method based on deep q-learning
Jiang, Anqing, Yoshie, Osamu, Chen, LiangYao
Multi-layer optical film has been found to afford important applications in optical communication, optical absorbers, optical filters, etc. Different algorithms of multi-layer optical film design has been developed, as simplex method, colony algorithm, genetic algorithm. These algorithms rapidly promote the design and manufacture of multi-layer films. However, traditional numerical algorithms of converge to local optimum. This means that the algorithms can not give a global optimal solution to the material researchers. In recent years, due to the rapid development to far artificial intelligence, to optimize optical film structure using AI algorithm has become possible. In this paper, we will introduce a new optical film design algorithm based on the deep Q learning. This model can converge the global optimum of the optical thin film structure, this will greatly improve the design efficiency of multi-layer films.