Goto

Collaborating Authors

 Yoon, Wonjin


Medical Hallucinations in Foundation Models and Their Impact on Healthcare

arXiv.org Artificial Intelligence

Foundation Models that are capable of processing and generating multi-modal data have transformed AI's role in medicine. However, a key limitation of their reliability is hallucination, where inaccurate or fabricated information can impact clinical decisions and patient safety. We define medical hallucination as any instance in which a model generates misleading medical content. This paper examines the unique characteristics, causes, and implications of medical hallucinations, with a particular focus on how these errors manifest themselves in real-world clinical scenarios. Our contributions include (1) a taxonomy for understanding and addressing medical hallucinations, (2) benchmarking models using medical hallucination dataset and physician-annotated LLM responses to real medical cases, providing direct insight into the clinical impact of hallucinations, and (3) a multi-national clinician survey on their experiences with medical hallucinations. Our results reveal that inference techniques such as Chain-of-Thought (CoT) and Search Augmented Generation can effectively reduce hallucination rates. However, despite these improvements, non-trivial levels of hallucination persist. These findings underscore the ethical and practical imperative for robust detection and mitigation strategies, establishing a foundation for regulatory policies that prioritize patient safety and maintain clinical integrity as AI becomes more integrated into healthcare. The feedback from clinicians highlights the urgent need for not only technical advances but also for clearer ethical and regulatory guidelines to ensure patient safety. A repository organizing the paper resources, summaries, and additional information is available at https://github.com/mitmedialab/medical hallucination.


Using tournaments to calculate AUROC for zero-shot classification with LLMs

arXiv.org Artificial Intelligence

Large language models perform surprisingly well on many zero-shot classification tasks, but are difficult to fairly compare to supervised classifiers due to the lack of a modifiable decision boundary. In this work, we propose and evaluate a method that converts binary classification tasks into pairwise comparison tasks, obtaining relative rankings from LLMs. Repeated pairwise comparisons can be used to score instances using the Elo rating system (used in chess and other competitions), inducing a confidence ordering over instances in a dataset. We evaluate scheduling algorithms for their ability to minimize comparisons, and show that our proposed algorithm leads to improved classification performance, while also providing more information than traditional zero-shot classification.


Biomedical NER for the Enterprise with Distillated BERN2 and the Kazu Framework

arXiv.org Artificial Intelligence

In order to assist the drug discovery/development process, pharmaceutical companies often apply biomedical NER and linking techniques over internal and public corpora. Decades of study of the field of BioNLP has produced a plethora of algorithms, systems and datasets. However, our experience has been that no single open source system meets all the requirements of a modern pharmaceutical company. In this work, we describe these requirements according to our experience of the industry, and present Kazu, a highly extensible, scalable open source framework designed to support BioNLP for the pharmaceutical sector. Kazu is a built around a computationally efficient version of the BERN2 NER model (TinyBERN2), and subsequently wraps several other BioNLP technologies into one coherent system. KAZU framework is open-sourced: https://github.com/AstraZeneca/KAZU


Answering Questions on COVID-19 in Real-Time

arXiv.org Artificial Intelligence

The recent outbreak of the novel coronavirus is wreaking havoc on the world and researchers are struggling to effectively combat it. One reason why the fight is difficult is due to the lack of information and knowledge. In this work, we outline our effort to contribute to shrinking this knowledge vacuum by creating covidAsk, a question answering (QA) system that combines biomedical text mining and QA techniques to provide answers to questions in real-time. Our system leverages both supervised and unsupervised approaches to provide informative answers using DenSPI (Seo et al., 2019) and BEST (Lee et al., 2016). Evaluation of covidAsk is carried out by using a manually created dataset called COVID-19 Questions which is based on facts about COVID-19. We hope our system will be able to aid researchers in their search for knowledge and information not only for COVID-19 but for future pandemics as well.