Yoo, Sangmin
RN-Net: Reservoir Nodes-Enabled Neuromorphic Vision Sensing Network
Yoo, Sangmin, Lee, Eric Yeu-Jer, Wang, Ziyu, Wang, Xinxin, Lu, Wei D.
Event-based cameras are inspired by the sparse and asynchronous spike representation of the biological visual system. However, processing the event data requires either using expensive feature descriptors to transform spikes into frames, or using spiking neural networks that are expensive to train. In this work, we propose a neural network architecture, Reservoir Nodes-enabled neuromorphic vision sensing Network (RN-Net), based on simple convolution layers integrated with dynamic temporal encoding reservoirs for local and global spatiotemporal feature detection with low hardware and training costs. The RN-Net allows efficient processing of asynchronous temporal features, and achieves the highest accuracy of 99.2% for DVS128 Gesture reported to date, and one of the highest accuracy of 67.5% for DVS Lip dataset at a much smaller network size. By leveraging the internal device and circuit dynamics, asynchronous temporal feature encoding can be implemented at very low hardware cost without preprocessing and dedicated memory and arithmetic units. The use of simple DNN blocks and standard backpropagation-based training rules further reduces implementation costs.
PowerGAN: A Machine Learning Approach for Power Side-Channel Attack on Compute-in-Memory Accelerators
Wang, Ziyu, Wu, Yuting, Park, Yongmo, Yoo, Sangmin, Wang, Xinxin, Eshraghian, Jason K., Lu, Wei D.
Abstract--Analog compute-in-memory (CIM) systems are promising for deep neural network (DNN) inference acceleration due to their energy efficiency and high throughput. However, as the use of DNNs expands, protecting user input privacy has become increasingly important. In this paper, we identify a potential security vulnerability wherein an adversary can reconstruct the user's private input data from a power side-channel attack, under proper data acquisition and pre-processing, even without knowledge of the DNN model. We further demonstrate a machine learning-based attack approach using a generative adversarial network (GAN) to enhance the data reconstruction. Our results show that the attack methodology is effective in reconstructing user inputs from analog CIM accelerator power leakage, even at large noise levels and after countermeasures are applied. Specifically, we demonstrate the efficacy of our approach on an example of U-Net inference chip for brain tumor detection, and show the original magnetic resonance imaging (MRI) medical images can be successfully reconstructed even at a noise-level of 20% standard deviation of the maximum power signal value. Our study highlights a potential security vulnerability in analog CIM accelerators and raises awareness of using GAN to breach user privacy in such systems.