Goto

Collaborating Authors

 Yoo, KiYoon


Advancing Beyond Identification: Multi-bit Watermark for Large Language Models

arXiv.org Artificial Intelligence

We propose a method to tackle misuses of large language models beyond the identification of machine-generated text. While existing methods focus on detection, some malicious misuses demand tracing the adversary user for counteracting them. To address this, we propose Multi-bit Watermark via Position Allocation, embedding traceable multi-bit information during language model generation. Leveraging the benefits of zero-bit watermarking, our method enables robust extraction of the watermark without any model access, embedding and extraction of long messages ($\geq$ 32-bit) without finetuning, and maintaining text quality, while allowing zero-bit detection all at the same time. Moreover, our watermark is relatively robust under strong attacks like interleaving human texts and paraphrasing.


Robust Multi-bit Natural Language Watermarking through Invariant Features

arXiv.org Artificial Intelligence

Recent years have witnessed a proliferation of valuable original natural language contents found in subscription-based media outlets, web novel platforms, and outputs of large language models. However, these contents are susceptible to illegal piracy and potential misuse without proper security measures. This calls for a secure watermarking system to guarantee copyright protection through leakage tracing or ownership identification. To effectively combat piracy and protect copyrights, a multi-bit watermarking framework should be able to embed adequate bits of information and extract the watermarks in a robust manner despite possible corruption. In this work, we explore ways to advance both payload and robustness by following a well-known proposition from image watermarking and identify features in natural language that are invariant to minor corruption. Through a systematic analysis of the possible sources of errors, we further propose a corruption-resistant infill model. Our full method improves upon the previous work on robustness by +16.8% point on average on four datasets, three corruption types, and two corruption ratios. Code available at https://github.com/bangawayoo/nlp-watermarking.


Self-Evolutionary Optimization for Pareto Front Learning

arXiv.org Artificial Intelligence

Multi-task learning (MTL), which aims to improve performance by learning multiple tasks simultaneously, inherently presents an optimization challenge due to multiple objectives. Hence, multi-objective optimization (MOO) approaches have been proposed for multitasking problems. Recent MOO methods approximate multiple optimal solutions (Pareto front) with a single unified model, which is collectively referred to as Pareto front learning (PFL). In this paper, we show that PFL can be re-formulated into another MOO problem with multiple objectives, each of which corresponds to different preference weights for the tasks. We leverage an evolutionary algorithm (EA) to propose a method for PFL called self-evolutionary optimization (SEO) by directly maximizing the hypervolume. By using SEO, the neural network learns to approximate the Pareto front conditioned on multiple hyper-parameters that drastically affect the hypervolume. Then, by generating a population of approximations simply by inferencing the network, the hyper-parameters of the network can be optimized by EA. Utilizing SEO for PFL, we also introduce self-evolutionary Pareto networks (SEPNet), enabling the unified model to approximate the entire Pareto front set that maximizes the hypervolume. Extensive experimental results confirm that SEPNet can find a better Pareto front than the current state-of-the-art methods while minimizing the increase in model size and training cost.


Dynamic Collective Intelligence Learning: Finding Efficient Sparse Model via Refined Gradients for Pruned Weights

arXiv.org Artificial Intelligence

With the growth of deep neural networks (DNN), the number of DNN parameters has drastically increased. This makes DNN models hard to be deployed on resource-limited embedded systems. To alleviate this problem, dynamic pruning methods have emerged, which try to find diverse sparsity patterns during training by utilizing Straight-Through-Estimator (STE) to approximate gradients of pruned weights. STE can help the pruned weights revive in the process of finding dynamic sparsity patterns. However, using these coarse gradients causes training instability and performance degradation owing to the unreliable gradient signal of the STE approximation. In this work, to tackle this issue, we introduce refined gradients to update the pruned weights by forming dual forwarding paths from two sets (pruned and unpruned) of weights. We propose a novel Dynamic Collective Intelligence Learning (DCIL) which makes use of the learning synergy between the collective intelligence of both weight sets. We verify the usefulness of the refined gradients by showing enhancements in the training stability and the model performance on the CIFAR and ImageNet datasets. DCIL outperforms various previously proposed pruning schemes including other dynamic pruning methods with enhanced stability during training.


On the Orthogonality of Knowledge Distillation with Other Techniques: From an Ensemble Perspective

arXiv.org Artificial Intelligence

To put a state-of-the-art neural network to practical use, it is necessary to design a model that has a good trade-off between the resource consumption and performance on the test set. Many researchers and engineers are developing methods that enable training or designing a model more efficiently. Developing an efficient model includes several strategies such as network architecture search, pruning, quantization, knowledge distillation, utilizing cheap convolution, regularization, and also includes any craft that leads to a better performance-resource trade-off. When combining these technologies together, it would be ideal if one source of performance improvement does not conflict with others. We call this property as the orthogonality in model efficiency. In this paper, we focus on knowledge distillation and demonstrate that knowledge distillation methods are orthogonal to other efficiency-enhancing methods both analytically and empirically. Analytically, we claim that knowledge distillation functions analogous to a ensemble method, bootstrap aggregating. This analytical explanation is provided from the perspective of implicit data augmentation property of knowledge distillation. Empirically, we verify knowledge distillation as a powerful apparatus for practical deployment of efficient neural network, and also introduce ways to integrate it with other methods effectively.