Goto

Collaborating Authors

 Yokota, Takuya


Towards Multi-Stakeholder Evaluation of ML Models: A Crowdsourcing Study on Metric Preferences in Job-matching System

arXiv.org Artificial Intelligence

While machine learning (ML) technology affects diverse stakeholders, there is no one-size-fits-all metric to evaluate the quality of outputs, including performance and fairness. Using predetermined metrics without soliciting stakeholder opinions is problematic because it leads to an unfair disregard for stakeholders in the ML pipeline. In this study, to establish practical ways to incorporate diverse stakeholder opinions into the selection of metrics for ML, we investigate participants' preferences for different metrics by using crowdsourcing. We ask 837 participants to choose a better model from two hypothetical ML models in a hypothetical job-matching system twenty times and calculate their utility values for seven metrics. To examine the participants' feedback in detail, we divide them into five clusters based on their utility values and analyze the tendencies of each cluster, including their preferences for metrics and common attributes. Based on the results, we discuss the points that should be considered when selecting appropriate metrics and evaluating ML models with multiple stakeholders.


Exploring the Impact of Lay User Feedback for Improving AI Fairness

arXiv.org Artificial Intelligence

Fairness in AI is a growing concern for high-stakes decision making. Engaging stakeholders, especially lay users, in fair AI development is promising yet overlooked. Recent efforts explore enabling lay users to provide AI fairness-related feedback, but there is still a lack of understanding of how to integrate users' feedback into an AI model and the impacts of doing so. To bridge this gap, we collected feedback from 58 lay users on the fairness of a XGBoost model trained on the Home Credit dataset, and conducted offline experiments to investigate the effects of retraining models on accuracy, and individual and group fairness. Our work contributes baseline results of integrating user fairness feedback in XGBoost, and a dataset and code framework to bootstrap research in engaging stakeholders in AI fairness. Our discussion highlights the challenges of employing user feedback in AI fairness and points the way to a future application area of interactive machine learning.