Not enough data to create a plot.
Try a different view from the menu above.
Ying, Lexing
When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax Optimality
Blanchet, Jose, Chen, Haoxuan, Lu, Yiping, Ying, Lexing
This paper studies the use of a machine learning-based estimator as a control variate for mitigating the variance of Monte Carlo sampling. Specifically, we seek to uncover the key factors that influence the efficiency of control variates in reducing variance. We examine a prototype estimation problem that involves simulating the moments of a Sobolev function based on observations obtained from (random) quadrature nodes. Firstly, we establish an information-theoretic lower bound for the problem. We then study a specific quadrature rule that employs a nonparametric regression-adjusted control variate to reduce the variance of the Monte Carlo simulation. We demonstrate that this kind of quadrature rule can improve the Monte Carlo rate and achieve the minimax optimal rate under a sufficient smoothness assumption. Due to the Sobolev Embedding Theorem, the sufficient smoothness assumption eliminates the existence of rare and extreme events. Finally, we show that, in the presence of rare and extreme events, a truncated version of the Monte Carlo algorithm can achieve the minimax optimal rate while the control variate cannot improve the convergence rate.
Variational Actor-Critic Algorithms
Zhu, Yuhua, Ying, Lexing
We introduce a class of variational actor-critic algorithms based on a variational formulation over both the value function and the policy. The objective function of the variational formulation consists of two parts: one for maximizing the value function and the other for minimizing the Bellman residual. Besides the vanilla gradient descent with both the value function and the policy updates, we propose two variants, the clipping method and the flipping method, in order to speed up the convergence. We also prove that, when the prefactor of the Bellman residual is sufficiently large, the fixed point of the algorithm is close to the optimal policy.
High-dimensional density estimation with tensorizing flow
Ren, Yinuo, Zhao, Hongli, Khoo, Yuehaw, Ying, Lexing
We propose the tensorizing flow method for estimating high-dimensional probability density functions from the observed data. The method is based on both tensor-train and flow-based generative modeling. Our method first efficiently constructs an approximate density in the tensor-train form via solving the tensor cores from a linear system based on the kernel density estimators of low-dimensional marginals. We then train a continuous-time flow model from this tensor-train density to the observed empirical distribution by performing a maximum likelihood estimation. The proposed method combines the optimization-less feature of the tensor-train with the flexibility of the flow-based generative models. Numerical results are included to demonstrate the performance of the proposed method.
Synthetic Principal Component Design: Fast Covariate Balancing with Synthetic Controls
Lu, Yiping, Li, Jiajin, Ying, Lexing, Blanchet, Jose
The optimal design of experiments typically involves solving an NP-hard combinatorial optimization problem. In this paper, we aim to develop a globally convergent and practically efficient optimization algorithm. Specifically, we consider a setting where the pre-treatment outcome data is available and the synthetic control estimator is invoked. The average treatment effect is estimated via the difference between the weighted average outcomes of the treated and control units, where the weights are learned from the observed data. {Under this setting, we surprisingly observed that the optimal experimental design problem could be reduced to a so-called \textit{phase synchronization} problem.} We solve this problem via a normalized variant of the generalized power method with spectral initialization. On the theoretical side, we establish the first global optimality guarantee for experiment design when pre-treatment data is sampled from certain data-generating processes. Empirically, we conduct extensive experiments to demonstrate the effectiveness of our method on both the US Bureau of Labor Statistics and the Abadie-Diemond-Hainmueller California Smoking Data. In terms of the root mean square error, our algorithm surpasses the random design by a large margin.
How to Learn when Data Gradually Reacts to Your Model
Izzo, Zachary, Zou, James, Ying, Lexing
A recent line of work has focused on training machine learning (ML) models in the performative setting, i.e. when the data distribution reacts to the deployed model. The goal in this setting is to learn a model which both induces a favorable data distribution and performs well on the induced distribution, thereby minimizing the test loss. Previous work on finding an optimal model assumes that the data distribution immediately adapts to the deployed model. In practice, however, this may not be the case, as the population may take time to adapt to the model. In many applications, the data distribution depends on both the currently deployed ML model and on the "state" that the population was in before the model was deployed. In this work, we propose a new algorithm, Stateful Performative Gradient Descent (Stateful PerfGD), for minimizing the performative loss even in the presence of these effects. We provide theoretical guarantees for the convergence of Stateful PerfGD. Our experiments confirm that Stateful PerfGD substantially outperforms previous state-of-the-art methods.
Operator Augmentation for Model-based Policy Evaluation
Tang, Xun, Ying, Lexing, Zhu, Yuhua
Reinforcement learning (RL) has received much attention following recent successes, such as AlphaGo and AlphaZero [25, 26]. One of the fundamental problems of RL is policy evaluation [29]. When the transition dynamics are unknown, one learns the dynamics model from observed data in model-based RL. However, even if the learned model is an unbiased estimate of the true dynamics, the policy evaluation under the learned model is biased. The question of interest in this paper is whether one can increase the accuracy of the policy evaluation given an estimated dynamics model. We consider a discounted Markov decision process (MDP) M (S, A, P, r, γ) with discrete state space S and discrete action space A. S and A are used to denote the size of S and A, respectively.
Machine Learning For Elliptic PDEs: Fast Rate Generalization Bound, Neural Scaling Law and Minimax Optimality
Lu, Yiping, Chen, Haoxuan, Lu, Jianfeng, Ying, Lexing, Blanchet, Jose
In this paper, we study the statistical limits of deep learning techniques for solving elliptic partial differential equations (PDEs) from random samples using the Deep Ritz Method (DRM) and Physics-Informed Neural Networks (PINNs). To simplify the problem, we focus on a prototype elliptic PDE: the Schr\"odinger equation on a hypercube with zero Dirichlet boundary condition, which has wide application in the quantum-mechanical systems. We establish upper and lower bounds for both methods, which improves upon concurrently developed upper bounds for this problem via a fast rate generalization bound. We discover that the current Deep Ritz Methods is sub-optimal and propose a modified version of it. We also prove that PINN and the modified version of DRM can achieve minimax optimal bounds over Sobolev spaces. Empirically, following recent work which has shown that the deep model accuracy will improve with growing training sets according to a power law, we supply computational experiments to show a similar behavior of dimension dependent power law for deep PDE solvers.
How to Learn when Data Reacts to Your Model: Performative Gradient Descent
Izzo, Zachary, Ying, Lexing, Zou, James
Performative distribution shift captures the setting where the choice of which ML model is deployed changes the data distribution. For example, a bank which uses the number of open credit lines to determine a customer's risk of default on a loan may induce customers to open more credit lines in order to improve their chances of being approved. Because of the interactions between the model and data distribution, finding the optimal model parameters is challenging. Works in this area have focused on finding stable points, which can be far from optimal. Here we introduce performative gradient descent (PerfGD), which is the first algorithm which provably converges to the performatively optimal point. PerfGD explicitly captures how changes in the model affects the data distribution and is simple to use. We support our findings with theory and experiments.
Top-$k$ eXtreme Contextual Bandits with Arm Hierarchy
Sen, Rajat, Rakhlin, Alexander, Ying, Lexing, Kidambi, Rahul, Foster, Dean, Hill, Daniel, Dhillon, Inderjit
Motivated by modern applications, such as online advertisement and recommender systems, we study the top-$k$ extreme contextual bandits problem, where the total number of arms can be enormous, and the learner is allowed to select $k$ arms and observe all or some of the rewards for the chosen arms. We first propose an algorithm for the non-extreme realizable setting, utilizing the Inverse Gap Weighting strategy for selecting multiple arms. We show that our algorithm has a regret guarantee of $O(k\sqrt{(A-k+1)T \log (|\mathcal{F}|T)})$, where $A$ is the total number of arms and $\mathcal{F}$ is the class containing the regression function, while only requiring $\tilde{O}(A)$ computation per time step. In the extreme setting, where the total number of arms can be in the millions, we propose a practically-motivated arm hierarchy model that induces a certain structure in mean rewards to ensure statistical and computational efficiency. The hierarchical structure allows for an exponential reduction in the number of relevant arms for each context, thus resulting in a regret guarantee of $O(k\sqrt{(\log A-k+1)T \log (|\mathcal{F}|T)})$. Finally, we implement our algorithm using a hierarchical linear function class and show superior performance with respect to well-known benchmarks on simulated bandit feedback experiments using extreme multi-label classification datasets. On a dataset with three million arms, our reduction scheme has an average inference time of only 7.9 milliseconds, which is a 100x improvement.
Efficient Long-Range Convolutions for Point Clouds
Peng, Yifan, Lin, Lin, Ying, Lexing, Zepeda-Núñez, Leonardo
The efficient treatment of long-range interactions for point clouds is a challenging problem in many scientific machine learning applications. To extract global information, one usually needs a large window size, a large number of layers, and/or a large number of channels. This can often significantly increase the computational cost. In this work, we present a novel neural network layer that directly incorporates long-range information for a point cloud. This layer, dubbed the long-range convolutional (LRC)-layer, leverages the convolutional theorem coupled with the non-uniform Fourier transform. In a nutshell, the LRC-layer mollifies the point cloud to an adequately sized regular grid, computes its Fourier transform, multiplies the result by a set of trainable Fourier multipliers, computes the inverse Fourier transform, and finally interpolates the result back to the point cloud. The resulting global all-to-all convolution operation can be performed in nearly-linear time asymptotically with respect to the number of input points. The LRC-layer is a particularly powerful tool when combined with local convolution as together they offer efficient and seamless treatment of both short and long range interactions. We showcase this framework by introducing a neural network architecture that combines LRC-layers with short-range convolutional layers to accurately learn the energy and force associated with a $N$-body potential. We also exploit the induced two-level decomposition and propose an efficient strategy to train the combined architecture with a reduced number of samples.