Goto

Collaborating Authors

 Ying, Jiahao


Babel: Open Multilingual Large Language Models Serving Over 90% of Global Speakers

arXiv.org Artificial Intelligence

Large language models (LLMs) have revolutionized natural language processing (NLP), yet open-source multilingual LLMs remain scarce, with existing models often limited in language coverage. Such models typically prioritize well-resourced languages, while widely spoken but under-resourced languages are often overlooked. To address this disparity, we introduce $\texttt{Babel}$, an open multilingual LLM that covers the top 25 languages by number of speakers, supports over 90% of the global population, and includes many languages neglected by other open multilingual LLMs. Unlike traditional continue pretraining approaches, Babel expands its parameter count through a layer extension technique that elevates Babel's performance ceiling. We introduce two variants: $\texttt{Babel-9B}$, designed for efficient inference and fine-tuning, and $\texttt{Babel-83B}$, which sets a new standard for open multilingual LLMs. Extensive evaluations on multilingual tasks demonstrate its superior performance compared to open LLMs of comparable size. In addition, using open-source supervised fine-tuning datasets, Babel achieves remarkable performance, with Babel-9B-Chat leading among 10B-sized LLMs and Babel-83B-Chat setting a new standard for multilingual tasks, reaching the same level of commercial models.


SeaExam and SeaBench: Benchmarking LLMs with Local Multilingual Questions in Southeast Asia

arXiv.org Artificial Intelligence

This study introduces two novel benchmarks, SeaExam and SeaBench, designed to evaluate the capabilities of Large Language Models (LLMs) in Southeast Asian (SEA) application scenarios. Unlike existing multilingual datasets primarily derived from English translations, these benchmarks are constructed based on real-world scenarios from SEA regions. SeaExam draws from regional educational exams to form a comprehensive dataset that encompasses subjects such as local history and literature. In contrast, SeaBench is crafted around multi-turn, open-ended tasks that reflect daily interactions within SEA communities. Our evaluations demonstrate that SeaExam and SeaBench more effectively discern LLM performance on SEA language tasks compared to their translated benchmarks. This highlights the importance of using real-world queries to assess the multilingual capabilities of LLMs.


EvoWiki: Evaluating LLMs on Evolving Knowledge

arXiv.org Artificial Intelligence

Knowledge utilization is a critical aspect of LLMs, and understanding how they adapt to evolving knowledge is essential for their effective deployment. However, existing benchmarks are predominantly static, failing to capture the evolving nature of LLMs and knowledge, leading to inaccuracies and vulnerabilities such as contamination. In this paper, we introduce EvoWiki, an evolving dataset designed to reflect knowledge evolution by categorizing information into stable, evolved, and uncharted states. EvoWiki is fully auto-updatable, enabling precise evaluation of continuously changing knowledge and newly released LLMs. Through experiments with Retrieval-Augmented Generation (RAG) and Contunual Learning (CL), we evaluate how effectively LLMs adapt to evolving knowledge. Our results indicate that current models often struggle with evolved knowledge, frequently providing outdated or incorrect responses. Moreover, the dataset highlights a synergistic effect between RAG and CL, demonstrating their potential to better adapt to evolving knowledge. EvoWiki provides a robust benchmark for advancing future research on the knowledge evolution capabilities of large language models.


QRMeM: Unleash the Length Limitation through Question then Reflection Memory Mechanism

arXiv.org Artificial Intelligence

While large language models (LLMs) have made notable advancements in natural language processing, they continue to struggle with processing extensive text. Memory mechanism offers a flexible solution for managing long contexts, utilizing techniques such as compression, summarization, and structuring to facilitate nuanced and efficient handling of large volumes of text. However, existing techniques face challenges with static knowledge integration, leading to insufficient adaptation to task-specific needs and missing multi-segmentation relationships, which hinders the dynamic reorganization and logical combination of relevant segments during the response process. To address these issues, we introduce a novel strategy, Question then Reflection Memory Mechanism (QRMeM), incorporating a dual-structured memory pool. This pool synergizes static textual content with structured graph guidance, fostering a reflective trial-and-error approach for navigating and identifying relevant segments. Our evaluation across multiple-choice questions (MCQ) and multi-document question answering (Multi-doc QA) benchmarks showcases QRMeM enhanced performance compared to existing approaches.


Automating Dataset Updates Towards Reliable and Timely Evaluation of Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved impressive performance across various natural language benchmarks, prompting a continual need to curate more difficult datasets for larger LLMs, which is costly and time-consuming. In this paper, we propose to automate dataset updating and provide systematical analysis regarding its effectiveness in dealing with benchmark leakage issue, difficulty control, and stability. Thus, once current benchmark has been mastered or leaked, we can update it for timely and reliable evaluation. There are two updating strategies: 1) mimicking strategy to generate similar samples based on original data, preserving stylistic and contextual essence, and 2) extending strategy that further expands existing samples at varying cognitive levels by adapting Bloom's taxonomy of educational objectives. Extensive experiments on updated MMLU and BIG-Bench demonstrate the stability of the proposed strategies and find that the mimicking strategy can effectively alleviate issues of overestimation from benchmark leakage. In cases where the efficient mimicking strategy fails, our extending strategy still shows promising results. Additionally, by controlling the difficulty, we can better discern the models' performance and enable fine-grained analysis -- neither too difficult nor too easy an exam can fairly judge students' learning status. To the best of our knowledge, we are the first to automate updating benchmarks for reliable and timely evaluation.


A + B: A General Generator-Reader Framework for Optimizing LLMs to Unleash Synergy Potential

arXiv.org Artificial Intelligence

Retrieval-Augmented Generation (RAG) is an effective solution to supplement necessary knowledge to large language models (LLMs). Targeting its bottleneck of retriever performance, "generate-then-read" pipeline is proposed to replace the retrieval stage with generation from the LLM itself. Although promising, this research direction is underexplored and still cannot work in the scenario when source knowledge is given. In this paper, we formalize a general "A + B" framework with varying combinations of foundation models and types for systematic investigation. We explore the efficacy of the base and chat versions of LLMs and found their different functionalities suitable for generator A and reader B, respectively. Their combinations consistently outperform single models, especially in complex scenarios. Furthermore, we extend the application of the "A + B" framework to scenarios involving source documents through continuous learning, enabling the direct integration of external knowledge into LLMs. This approach not only facilitates effective acquisition of new knowledge but also addresses the challenges of safety and helpfulness post-adaptation. The paper underscores the versatility of the "A + B" framework, demonstrating its potential to enhance the practical application of LLMs across various domains.


Benchmarking Foundation Models with Language-Model-as-an-Examiner

arXiv.org Artificial Intelligence

Numerous benchmarks have been established to assess the performance of foundation models on open-ended question answering, which serves as a comprehensive test of a model's ability to understand and generate language in a manner similar to humans. Most of these works focus on proposing new datasets, however, we see two main issues within previous benchmarking pipelines, namely testing leakage and evaluation automation. In this paper, we propose a novel benchmarking framework, Language-Model-as-an-Examiner, where the LM serves as a knowledgeable examiner that formulates questions based on its knowledge and evaluates responses in a reference-free manner. Our framework allows for effortless extensibility as various LMs can be adopted as the examiner, and the questions can be constantly updated given more diverse trigger topics. For a more comprehensive and equitable evaluation, we devise three strategies: (1) We instruct the LM examiner to generate questions across a multitude of domains to probe for a broad acquisition, and raise follow-up questions to engage in a more in-depth assessment. (2) Upon evaluation, the examiner combines both scoring and ranking measurements, providing a reliable result as it aligns closely with human annotations. (3) We additionally propose a decentralized Peer-examination method to address the biases in a single examiner. Our data and benchmarking results are available at: http://lmexam.xlore.cn.


Intuitive or Dependent? Investigating LLMs' Robustness to Conflicting Prompts

arXiv.org Artificial Intelligence

This paper explores the robustness of LLMs' preference to their internal memory or the given prompt, which may contain contrasting information in real-world applications due to noise or task settings. To this end, we establish a quantitative benchmarking framework and conduct the role playing intervention to control LLMs' preference. In specific, we define two types of robustness, factual robustness targeting the ability to identify the correct fact from prompts or memory, and decision style to categorize LLMs' behavior in making consistent choices -- assuming there is no definitive "right" answer -- intuitive, dependent, or rational based on cognitive theory. Our findings, derived from extensive experiments on seven open-source and closed-source LLMs, reveal that these models are highly susceptible to misleading prompts, especially for instructing commonsense knowledge. While detailed instructions can mitigate the selection of misleading answers, they also increase the incidence of invalid responses. After Unraveling the preference, we intervene different sized LLMs through specific style of role instruction, showing their varying upper bound of robustness and adaptivity.