Goto

Collaborating Authors

 Ying, Chengyang


Self-Consistent Model-based Adaptation for Visual Reinforcement Learning

arXiv.org Artificial Intelligence

Visual reinforcement learning agents typically face serious performance declines in real-world applications caused by visual distractions. Existing methods rely on fine-tuning the policy's representations with hand-crafted augmentations. In this work, we propose Self-Consistent Model-based Adaptation (SCMA), a novel method that fosters robust adaptation without modifying the policy. By transferring cluttered observations to clean ones with a denoising model, SCMA can mitigate distractions for various policies as a plug-and-play enhancement. To optimize the denoising model in an unsupervised manner, we derive an unsupervised distribution matching objective with a theoretical analysis of its optimality. We further present a practical algorithm to optimize the objective by estimating the distribution of clean observations with a pre-trained world model. Extensive experiments on multiple visual generalization benchmarks and real robot data demonstrate that SCMA effectively boosts performance across various distractions and exhibits better sample efficiency.


Exploratory Diffusion Policy for Unsupervised Reinforcement Learning

arXiv.org Artificial Intelligence

Unsupervised reinforcement learning (RL) aims to pre-train agents by exploring states or skills in reward-free environments, facilitating the adaptation to downstream tasks. However, existing methods often overlook the fitting ability of pre-trained policies and struggle to handle the heterogeneous pre-training data, which are crucial for achieving efficient exploration and fast fine-tuning. To address this gap, we propose Exploratory Diffusion Policy (EDP), which leverages the strong expressive ability of diffusion models to fit the explored data, both boosting exploration and obtaining an efficient initialization for downstream tasks. Specifically, we estimate the distribution of collected data in the replay buffer with the diffusion policy and propose a score intrinsic reward, encouraging the agent to explore unseen states. For fine-tuning the pre-trained diffusion policy on downstream tasks, we provide both theoretical analyses and practical algorithms, including an alternating method of Q function optimization and diffusion policy distillation. Extensive experiments demonstrate the effectiveness of EDP in efficient exploration during pre-training and fast adaptation during fine-tuning.


ManiBox: Enhancing Spatial Grasping Generalization via Scalable Simulation Data Generation

arXiv.org Artificial Intelligence

Learning a precise robotic grasping policy is crucial for embodied agents operating in complex real-world manipulation tasks. Despite significant advancements, most models still struggle with accurate spatial positioning of objects to be grasped. We first show that this spatial generalization challenge stems primarily from the extensive data requirements for adequate spatial understanding. However, collecting such data with real robots is prohibitively expensive, and relying on simulation data often leads to visual generalization gaps upon deployment. To overcome these challenges, we then focus on state-based policy generalization and present \textbf{ManiBox}, a novel bounding-box-guided manipulation method built on a simulation-based teacher-student framework. The teacher policy efficiently generates scalable simulation data using bounding boxes, which are proven to uniquely determine the objects' spatial positions. The student policy then utilizes these low-dimensional spatial states to enable zero-shot transfer to real robots. Through comprehensive evaluations in simulated and real-world environments, ManiBox demonstrates a marked improvement in spatial grasping generalization and adaptability to diverse objects and backgrounds. Further, our empirical study into scaling laws for policy performance indicates that spatial volume generalization scales with data volume in a power law. For a certain level of spatial volume, the success rate of grasping empirically follows Michaelis-Menten kinetics relative to data volume, showing a saturation effect as data increases. Our videos and code are available in https://thkkk.github.io/manibox.


Fourier Controller Networks for Real-Time Decision-Making in Embodied Learning

arXiv.org Artificial Intelligence

Transformer has shown promise in reinforcement learning to model time-varying features for obtaining generalized low-level robot policies on diverse robotics datasets in embodied learning. However, it still suffers from the issues of low data efficiency and high inference latency. In this paper, we propose to investigate the task from a new perspective of the frequency domain. We first observe that the energy density in the frequency domain of a robot's trajectory is mainly concentrated in the low-frequency part. Then, we present the Fourier Controller Network (FCNet), a new network that uses Short-Time Fourier Transform (STFT) to extract and encode time-varying features through frequency domain interpolation. In order to do real-time decision-making, we further adopt FFT and Sliding DFT methods in the model architecture to achieve parallel training and efficient recurrent inference. Extensive results in both simulated (e.g., D4RL) and real-world environments (e.g., robot locomotion) demonstrate FCNet's substantial efficiency and effectiveness over existing methods such as Transformer, e.g., FCNet outperforms Transformer on multi-environmental robotics datasets of all types of sizes (from 1.9M to 120M). The project page and code can be found https://thkkk.github.io/fcnet.


The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition

arXiv.org Artificial Intelligence

In the realm of autonomous driving, robust perception under out-of-distribution conditions is paramount for the safe deployment of vehicles. Challenges such as adverse weather, sensor malfunctions, and environmental unpredictability can severely impact the performance of autonomous systems. The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies that can withstand and adapt to these real-world variabilities. Focusing on four pivotal tasks -- BEV detection, map segmentation, semantic occupancy prediction, and multi-view depth estimation -- the competition laid down a gauntlet to innovate and enhance system resilience against typical and atypical disturbances. This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries, resulting in nearly one thousand submissions evaluated through our servers. The competition culminated in 15 top-performing solutions, which introduced a range of innovative approaches including advanced data augmentation, multi-sensor fusion, self-supervised learning for error correction, and new algorithmic strategies to enhance sensor robustness. These contributions significantly advanced the state of the art, particularly in handling sensor inconsistencies and environmental variability. Participants, through collaborative efforts, pushed the boundaries of current technologies, showcasing their potential in real-world scenarios. Extensive evaluations and analyses provided insights into the effectiveness of these solutions, highlighting key trends and successful strategies for improving the resilience of driving perception systems. This challenge has set a new benchmark in the field, providing a rich repository of techniques expected to guide future research in this field.


PEAC: Unsupervised Pre-training for Cross-Embodiment Reinforcement Learning

arXiv.org Artificial Intelligence

Designing generalizable agents capable of adapting to diverse embodiments has achieved significant attention in Reinforcement Learning (RL), which is critical for deploying RL agents in various real-world applications. Previous Cross-Embodiment RL approaches have focused on transferring knowledge across embodiments within specific tasks. These methods often result in knowledge tightly coupled with those tasks and fail to adequately capture the distinct characteristics of different embodiments. To address this limitation, we introduce the notion of Cross-Embodiment Unsupervised RL (CEURL), which leverages unsupervised learning to enable agents to acquire embodiment-aware and task-agnostic knowledge through online interactions within reward-free environments. We formulate CEURL as a novel Controlled Embodiment Markov Decision Process (CE-MDP) and systematically analyze CEURL's pre-training objectives under CE-MDP. Based on these analyses, we develop a novel algorithm Pre-trained Embodiment-Aware Control (PEAC) for handling CEURL, incorporating an intrinsic reward function specifically designed for cross-embodiment pre-training. PEAC not only provides an intuitive optimization strategy for cross-embodiment pre-training but also can integrate flexibly with existing unsupervised RL methods, facilitating cross-embodiment exploration and skill discovery. Extensive experiments in both simulated (e.g., DMC and Robosuite) and real-world environments (e.g., legged locomotion) demonstrate that PEAC significantly improves adaptation performance and cross-embodiment generalization, demonstrating its effectiveness in overcoming the unique challenges of CEURL.


DPOT: Auto-Regressive Denoising Operator Transformer for Large-Scale PDE Pre-Training

arXiv.org Artificial Intelligence

Pre-training has been investigated to improve the efficiency and performance of training neural operators in data-scarce settings. However, it is largely in its infancy due to the inherent complexity and diversity, such as long trajectories, multiple scales and varying dimensions of partial differential equations (PDEs) data. In this paper, we present a new auto-regressive denoising pre-training strategy, which allows for more stable and efficient pre-training on PDE data and generalizes to various downstream tasks. Moreover, by designing a flexible and scalable model architecture based on Fourier attention, we can easily scale up the model for large-scale pre-training. We train our PDE foundation model with up to 0.5B parameters on 10+ PDE datasets with more than 100k trajectories. Extensive experiments show that we achieve SOTA on these benchmarks and validate the strong generalizability of our model to significantly enhance performance on diverse downstream PDE tasks like 3D data. Code is available at \url{https://github.com/thu-ml/DPOT}.


Task Aware Dreamer for Task Generalization in Reinforcement Learning

arXiv.org Artificial Intelligence

A long-standing goal of reinforcement learning is to acquire agents that can learn on training tasks and generalize well on unseen tasks that may share a similar dynamic but with different reward functions. The ability to generalize across tasks is important as it determines an agent's adaptability to real-world scenarios where reward mechanisms might vary. In this work, we first show that training a general world model can utilize similar structures in these tasks and help train more generalizable agents. Extending world models into the task generalization setting, we introduce a novel method named Task Aware Dreamer (TAD), which integrates reward-informed features to identify consistent latent characteristics across tasks. Within TAD, we compute the variational lower bound of sample data log-likelihood, which introduces a new term designed to differentiate tasks using their states, as the optimization objective of our reward-informed world models. To demonstrate the advantages of the reward-informed policy in TAD, we introduce a new metric called Task Distribution Relevance (TDR) which quantitatively measures the relevance of different tasks. For tasks exhibiting a high TDR, i.e., the tasks differ significantly, we illustrate that Markovian policies struggle to distinguish them, thus it is necessary to utilize reward-informed policies in TAD. Extensive experiments in both image-based and state-based tasks show that TAD can significantly improve the performance of handling different tasks simultaneously, especially for those with high TDR, and display a strong generalization ability to unseen tasks.


GNOT: A General Neural Operator Transformer for Operator Learning

arXiv.org Artificial Intelligence

Learning partial differential equations' (PDEs) solution operators is an essential problem in machine learning. However, there are several challenges for learning operators in practical applications like the irregular mesh, multiple input functions, and complexity of the PDEs' solution. To address these challenges, we propose a general neural operator transformer (GNOT), a scalable and effective transformer-based framework for learning operators. By designing a novel heterogeneous normalized attention layer, our model is highly flexible to handle multiple input functions and irregular meshes. Besides, we introduce a geometric gating mechanism which could be viewed as a soft domain decomposition to solve the multi-scale problems. The large model capacity of the transformer architecture grants our model the possibility to scale to large datasets and practical problems. We conduct extensive experiments on multiple challenging datasets from different domains and achieve a remarkable improvement compared with alternative methods. Our code and data are publicly available at \url{https://github.com/thu-ml/GNOT}.


A Unified Hard-Constraint Framework for Solving Geometrically Complex PDEs

arXiv.org Artificial Intelligence

We present a unified hard-constraint framework for solving geometrically complex PDEs with neural networks, where the most commonly used Dirichlet, Neumann, and Robin boundary conditions (BCs) are considered. Specifically, we first introduce the "extra fields" from the mixed finite element method to reformulate the PDEs so as to equivalently transform the three types of BCs into linear equations. Based on the reformulation, we derive the general solutions of the BCs analytically, which are employed to construct an ansatz that automatically satisfies the BCs. With such a framework, we can train the neural networks without adding extra loss terms and thus efficiently handle geometrically complex PDEs, alleviating the unbalanced competition between the loss terms corresponding to the BCs and PDEs. We theoretically demonstrate that the "extra fields" can stabilize the training process. Experimental results on real-world geometrically complex PDEs showcase the effectiveness of our method compared with state-of-the-art baselines.