Goto

Collaborating Authors

 Yin Cheng Ng


Bayesian Semi-supervised Learning with Graph Gaussian Processes

Neural Information Processing Systems

We propose a data-efficient Gaussian process-based Bayesian approach to the semisupervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-supervised learning benchmark experiments, and outperforms the neural networks in active learning experiments where labels are scarce. Furthermore, the model does not require a validation data set for early stopping to control over-fitting. Our model can be viewed as an instance of empirical distribution regression weighted locally by network connectivity. We further motivate the intuitive construction of the model with a Bayesian linear model interpretation where the node features are filtered by an operator related to the graph Laplacian. The method can be easily implemented by adapting off-the-shelf scalable variational inference algorithms for Gaussian processes.


Scaling Factorial Hidden Markov Models: Stochastic Variational Inference without Messages

Neural Information Processing Systems

Factorial Hidden Markov Models (FHMMs) are powerful models for sequential data but they do not scale well with long sequences. We propose a scalable inference and learning algorithm for FHMMs that draws on ideas from the stochastic variational inference, neural network and copula literatures. Unlike existing approaches, the proposed algorithm requires no message passing procedure among latent variables and can be distributed to a network of computers to speed up learning. Our experiments corroborate that the proposed algorithm does not introduce further approximation bias compared to the proven structured mean-field algorithm, and achieves better performance with long sequences and large FHMMs.


Bayesian Semi-supervised Learning with Graph Gaussian Processes

Neural Information Processing Systems

We propose a data-efficient Gaussian process-based Bayesian approach to the semisupervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-supervised learning benchmark experiments, and outperforms the neural networks in active learning experiments where labels are scarce. Furthermore, the model does not require a validation data set for early stopping to control over-fitting. Our model can be viewed as an instance of empirical distribution regression weighted locally by network connectivity. We further motivate the intuitive construction of the model with a Bayesian linear model interpretation where the node features are filtered by an operator related to the graph Laplacian. The method can be easily implemented by adapting off-the-shelf scalable variational inference algorithms for Gaussian processes.