Yin, Dennis
TeMPO: Efficient Time-Multiplexed Dynamic Photonic Tensor Core for Edge AI with Compact Slow-Light Electro-Optic Modulator
Zhang, Meng, Yin, Dennis, Gangi, Nicholas, Begović, Amir, Chen, Alexander, Huang, Zhaoran Rena, Gu, Jiaqi
Electronic-photonic computing systems offer immense potential in energy-efficient artificial intelligence (AI) acceleration tasks due to the superior computing speed and efficiency of optics, especially for real-time, low-energy deep neural network (DNN) inference tasks on resource-restricted edge platforms. However, current optical neural accelerators based on foundry-available devices and conventional system architecture still encounter a performance gap compared to highly customized electronic counterparts. To bridge the performance gap due to lack of domain specialization, we present a time-multiplexed dynamic photonic tensor accelerator, dubbed TeMPO, with cross-layer device/circuit/architecture customization. At the device level, we present foundry-compatible, customized photonic devices, including a slow-light electro-optic modulator with experimental demonstration, optical splitters, and phase shifters that significantly reduce the footprint and power in input encoding and dot-product calculation. At the circuit level, partial products are hierarchically accumulated via parallel photocurrent aggregation, lightweight capacitive temporal integration, and sequential digital summation, considerably relieving the analog-to-digital conversion bottleneck. We also employ a multi-tile, multi-core architecture to maximize hardware sharing for higher efficiency. Across diverse edge AI workloads, TeMPO delivers digital-comparable task accuracy with superior quantization/noise tolerance. We achieve a 368.6 TOPS peak performance, 22.3 TOPS/W energy efficiency, and 1.2 TOPS/mm$^2$ compute density, pushing the Pareto frontier in edge AI hardware. This work signifies the power of cross-layer co-design and domain-specific customization, paving the way for future electronic-photonic accelerators with even greater performance and efficiency.
Ultra Fast Transformers on FPGAs for Particle Physics Experiments
Jiang, Zhixing, Yin, Dennis, Khoda, Elham E, Loncar, Vladimir, Govorkova, Ekaterina, Moreno, Eric, Harris, Philip, Hauck, Scott, Hsu, Shih-Chieh
This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the \texttt{hls4ml} tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 $\mu$s on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments.