Goto

Collaborating Authors

 Yin, Dennis


TeMPO: Efficient Time-Multiplexed Dynamic Photonic Tensor Core for Edge AI with Compact Slow-Light Electro-Optic Modulator

arXiv.org Artificial Intelligence

Electronic-photonic computing systems offer immense potential in energy-efficient artificial intelligence (AI) acceleration tasks due to the superior computing speed and efficiency of optics, especially for real-time, low-energy deep neural network (DNN) inference tasks on resource-restricted edge platforms. However, current optical neural accelerators based on foundry-available devices and conventional system architecture still encounter a performance gap compared to highly customized electronic counterparts. To bridge the performance gap due to lack of domain specialization, we present a time-multiplexed dynamic photonic tensor accelerator, dubbed TeMPO, with cross-layer device/circuit/architecture customization. At the device level, we present foundry-compatible, customized photonic devices, including a slow-light electro-optic modulator with experimental demonstration, optical splitters, and phase shifters that significantly reduce the footprint and power in input encoding and dot-product calculation. At the circuit level, partial products are hierarchically accumulated via parallel photocurrent aggregation, lightweight capacitive temporal integration, and sequential digital summation, considerably relieving the analog-to-digital conversion bottleneck. We also employ a multi-tile, multi-core architecture to maximize hardware sharing for higher efficiency. Across diverse edge AI workloads, TeMPO delivers digital-comparable task accuracy with superior quantization/noise tolerance. We achieve a 368.6 TOPS peak performance, 22.3 TOPS/W energy efficiency, and 1.2 TOPS/mm$^2$ compute density, pushing the Pareto frontier in edge AI hardware. This work signifies the power of cross-layer co-design and domain-specific customization, paving the way for future electronic-photonic accelerators with even greater performance and efficiency.


Ultra Fast Transformers on FPGAs for Particle Physics Experiments

arXiv.org Artificial Intelligence

This work introduces a highly efficient implementation of the transformer architecture on a Field-Programmable Gate Array (FPGA) by using the \texttt{hls4ml} tool. Given the demonstrated effectiveness of transformer models in addressing a wide range of problems, their application in experimental triggers within particle physics becomes a subject of significant interest. In this work, we have implemented critical components of a transformer model, such as multi-head attention and softmax layers. To evaluate the effectiveness of our implementation, we have focused on a particle physics jet flavor tagging problem, employing a public dataset. We recorded latency under 2 $\mu$s on the Xilinx UltraScale+ FPGA, which is compatible with hardware trigger requirements at the CERN Large Hadron Collider experiments.