Yi, Yung
Curiosity-Driven Multi-Agent Exploration with Mixed Objectives
Reyes, Roben Delos, Son, Kyunghwan, Jung, Jinhwan, Kang, Wan Ju, Yi, Yung
Intrinsic rewards have been increasingly used to mitigate the sparse reward problem in single-agent reinforcement learning. These intrinsic rewards encourage the agent to look for novel experiences, guiding the agent to explore the environment sufficiently despite the lack of extrinsic rewards. Curiosity-driven exploration is a simple yet efficient approach that quantifies this novelty as the prediction error of the agent's curiosity module, an internal neural network that is trained to predict the agent's next state given its current state and action. We show here, however, that naively using this curiosity-driven approach to guide exploration in sparse reward cooperative multi-agent environments does not consistently lead to improved results. Straightforward multi-agent extensions of curiosity-driven exploration take into consideration either individual or collective novelty only and thus, they do not provide a distinct but collaborative intrinsic reward signal that is essential for learning in cooperative multi-agent tasks. In this work, we propose a curiosity-driven multi-agent exploration method that has the mixed objective of motivating the agents to explore the environment in ways that are individually and collectively novel. First, we develop a two-headed curiosity module that is trained to predict the corresponding agent's next observation in the first head and the next joint observation in the second head. Second, we design the intrinsic reward formula to be the sum of the individual and joint prediction errors of this curiosity module. We empirically show that the combination of our curiosity module architecture and intrinsic reward formulation guides multi-agent exploration more efficiently than baseline approaches, thereby providing the best performance boost to MARL algorithms in cooperative navigation environments with sparse rewards.
QTRAN++: Improved Value Transformation for Cooperative Multi-Agent Reinforcement Learning
Son, Kyunghwan, Ahn, Sungsoo, Reyes, Roben Delos, Shin, Jinwoo, Yi, Yung
QTRAN is a multi-agent reinforcement learning (MARL) algorithm capable of learning the largest class of joint-action value functions up to date. However, despite its strong theoretical guarantee, it has shown poor empirical performance in complex environments, such as Starcraft Multi-Agent Challenge (SMAC). In this paper, we identify the performance bottleneck of QTRAN and propose a substantially improved version, coined QTRAN++. Our gains come from (i) stabilizing the training objective of QTRAN, (ii) removing the strict role separation between the action-value estimators of QTRAN, and (iii) introducing a multi-head mixing network for value transformation. Through extensive evaluation, we confirm that our diagnosis is correct, and QTRAN++ successfully bridges the gap between empirical performance and theoretical guarantee. In particular, QTRAN++ newly achieves state-of-the-art performance in the SMAC environment. The code will be released.
Solving Continual Combinatorial Selection via Deep Reinforcement Learning
Song, Hyungseok, Jang, Hyeryung, Tran, Hai H., Yoon, Se-eun, Son, Kyunghwan, Yun, Donggyu, Chung, Hyoju, Yi, Yung
We consider the Markov Decision Process (MDP) of selecting a subset of items at each step, termed the Select-MDP (S-MDP). The large state and action spaces of S-MDPs make them intractable to solve with typical reinforcement learning (RL) algorithms especially when the number of items is huge. In this paper, we present a deep RL algorithm to solve this issue by adopting the following key ideas. First, we convert the original S-MDP into an Iterative Select-MDP (IS-MDP), which is equivalent to the S-MDP in terms of optimal actions. IS-MDP decomposes a joint action of selecting K items simultaneously into K iterative selections resulting in the decrease of actions at the expense of an exponential increase of states. Second, we overcome this state space explo-sion by exploiting a special symmetry in IS-MDPs with novel weight shared Q-networks, which prov-ably maintain sufficient expressive power. Various experiments demonstrate that our approach works well even when the item space is large and that it scales to environments with item spaces different from those used in training.
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
Son, Kyunghwan, Kim, Daewoo, Kang, Wan Ju, Hostallero, David Earl, Yi, Yung
We explore value-based solutions for multi-agent reinforcement learning (MARL) tasks in the centralized training with decentralized execution (CTDE) regime popularized recently. However, VDN and QMIX are representative examples that use the idea of factorization of the joint action-value function into individual ones for decentralized execution. VDN and QMIX address only a fraction of factorizable MARL tasks due to their structural constraint in factorization such as additivity and monotonicity. In this paper, we propose a new factorization method for MARL, QTRAN, which is free from such structural constraints and takes on a new approach to transforming the original joint action-value function into an easily factorizable one, with the same optimal actions. QTRAN guarantees more general factorization than VDN or QMIX, thus covering a much wider class of MARL tasks than does previous methods. Our experiments for the tasks of multi-domain Gaussian-squeeze and modified predator-prey demonstrate QTRAN's superior performance with especially larger margins in games whose payoffs penalize non-cooperative behavior more aggressively.
Learning to Schedule Communication in Multi-agent Reinforcement Learning
Kim, Daewoo, Moon, Sangwoo, Hostallero, David, Kang, Wan Ju, Lee, Taeyoung, Son, Kyunghwan, Yi, Yung
Many real-world reinforcement learning tasks require multiple agents to make sequential decisions under the agents' interaction, where well-coordinated actions among the agents are crucial to achieve the target goal better at these tasks. One way to accelerate the coordination effect is to enable multiple agents to communicate with each other in a distributed manner and behave as a group. In this paper, we study a practical scenario when (i) the communication bandwidth is limited and (ii) the agents share the communication medium so that only a restricted number of agents are able to simultaneously use the medium, as in the state-of-the-art wireless networking standards. This calls for a certain form of communication scheduling. In that regard, we propose a multi-agent deep reinforcement learning framework, called SchedNet, in which agents learn how to schedule themselves, how to encode the messages, and how to select actions based on received messages. SchedNet is capable of deciding which agents should be entitled to broadcasting their (encoded) messages, by learning the importance of each agent's partially observed information. We evaluate SchedNet against multiple baselines under two different applications, namely, cooperative communication and navigation, and predator-prey. Our experiments show a non-negligible performance gap between SchedNet and other mechanisms such as the ones without communication and with vanilla scheduling methods, e.g., round robin, ranging from 32% to 43%.
Learning Data Dependency with Communication Cost
Jang, Hyeryung, Song, HyungSeok, Yi, Yung
In this paper, we consider the problem of recovering a graph that represents the statistical data dependency among nodes for a set of data samples generated by nodes, which provides the basic structure to perform an inference task, such as MAP (maximum a posteriori). This problem is referred to as structure learning. When nodes are spatially separated in different locations, running an inference algorithm requires a non-negligible amount of message passing, incurring some communication cost. We inevitably have the trade-off between the accuracy of structure learning and the cost we need to pay to perform a given message-passing based inference task because the learnt edge structures of data dependency and physical connectivity graph are often highly different. In this paper, we formalize this trade-off in an optimization problem which outputs the data dependency graph that jointly considers learning accuracy and message-passing costs. We focus on a distributed MAP as the target inference task, and consider two different implementations, ASYNC-MAP and SYNC-MAP that have different message-passing mechanisms and thus different cost structures. In ASYNC- MAP, we propose a polynomial time learning algorithm that is optimal, motivated by the problem of finding a maximum weight spanning tree. In SYNC-MAP, we first prove that it is NP-hard and propose a greedy heuristic. For both implementations, we then quantify how the probability that the resulting data graphs from those learning algorithms differ from the ideal data graph decays as the number of data samples grows, using the large deviation principle, where the decaying rate is characterized by some topological structures of both original data dependency and physical connectivity graphs as well as the degree of the trade-off. We validate our theoretical findings through extensive simulations, which confirms that it has a good match.
Iterative Bayesian Learning for Crowdsourced Regression
Ok, Jungseul, Oh, Sewoong, Jang, Yunhun, Shin, Jinwoo, Yi, Yung
Crowdsourcing platforms emerged as popular venues for purchasing human intelligence at low cost for large volumes of tasks. As many low-paid workers are prone to give noisy answers, one of the fundamental questions is how to identify more reliable workers and exploit this heterogeneity to infer the true answers accurately. Despite significant research efforts for classification tasks with discrete answers, little attention has been paid to regression tasks with continuous answers. The popular Dawid-Skene model for discrete answers has the algorithmic and mathematical simplicity in relation to low-rank structures. But it does not generalize for continuous valued answers. To this end, we introduce a new probabilistic model for crowdsourced regression capturing the heterogeneity of the workers, generalizing the Dawid-Skene model to the continuous domain. We design a message-passing algorithm for Bayesian inference inspired by the popular belief propagation algorithm. We showcase its performance first by proving that it achieves a near optimal mean squared error by comparing it to an oracle estimator. Asymptotically, we can provide a tighter analysis showing that the proposed algorithm achieves the exact optimal performance. We next show synthetic experiments confirming our theoretical predictions. As a practical application, we further emulate a crowdsourcing system reproducing PASCAL visual object classes datasets and show that de-noising the crowdsourced data from the proposed scheme can significantly improve the performance for the vision task.
Optimal Inference in Crowdsourced Classification via Belief Propagation
Ok, Jungseul, Oh, Sewoong, Shin, Jinwoo, Yi, Yung
Crowdsourcing systems are popular for solving large-scale labelling tasks with low-paid workers. We study the problem of recovering the true labels from the possibly erroneous crowdsourced labels under the popular Dawid-Skene model. To address this inference problem, several algorithms have recently been proposed, but the best known guarantee is still significantly larger than the fundamental limit. We close this gap by introducing a tighter lower bound on the fundamental limit and proving that Belief Propagation (BP) exactly matches this lower bound. The guaranteed optimality of BP is the strongest in the sense that it is information-theoretically impossible for any other algorithm to correctly label a larger fraction of the tasks. Experimental results suggest that BP is close to optimal for all regimes considered and improves upon competing state-of-the-art algorithms.