Goto

Collaborating Authors

 Ye, Xi


RA-DP: Rapid Adaptive Diffusion Policy for Training-Free High-frequency Robotics Replanning

arXiv.org Artificial Intelligence

Diffusion models exhibit impressive scalability in robotic task learning, yet they struggle to adapt to novel, highly dynamic environments. This limitation primarily stems from their constrained replanning ability: they either operate at a low frequency due to a time-consuming iterative sampling process, or are unable to adapt to unforeseen feedback in case of rapid replanning. To address these challenges, we propose RA-DP, a novel diffusion policy framework with training-free high-frequency replanning ability that solves the above limitations in adapting to unforeseen dynamic environments. Specifically, our method integrates guidance signals which are often easily obtained in the new environment during the diffusion sampling process, and utilizes a novel action queue mechanism to generate replanned actions at every denoising step without retraining, thus forming a complete training-free framework for robot motion adaptation in unseen environments. Extensive evaluations have been conducted in both well-recognized simulation benchmarks and real robot tasks. Results show that RA-DP outperforms the state-of-the-art diffusion-based methods in terms of replanning frequency and success rate. Moreover, we show that our framework is theoretically compatible with any training-free guidance signal.


LongProc: Benchmarking Long-Context Language Models on Long Procedural Generation

arXiv.org Artificial Intelligence

Existing benchmarks for evaluating long-context language models (LCLMs) primarily focus on long-context recall, requiring models to produce short responses based on a few critical snippets while processing thousands of irrelevant tokens. We introduce LongProc (Long Procedural Generation), a new benchmark that requires both the integration of highly dispersed information and long-form generation. LongProc consists of six diverse procedural generation tasks, such as extracting structured information from HTML pages into a TSV format and executing complex search procedures to create travel plans. These tasks challenge LCLMs by testing their ability to follow detailed procedural instructions, synthesize and reason over dispersed information, and generate structured, long-form outputs (up to 8K tokens). Furthermore, as these tasks adhere to deterministic procedures and yield structured outputs, they enable reliable rule-based evaluation. We evaluate 17 LCLMs on LongProc across three difficulty levels, with maximum numbers of output tokens set at 500, 2K, and 8K. Notably, while all tested models claim a context window size above 32K tokens, open-weight models typically falter on 2K-token tasks, and closed-source models like GPT-4o show significant degradation on 8K-token tasks. Further analysis reveals that LCLMs struggle to maintain long-range coherence in long-form generations. These findings highlight critical limitations in current LCLMs and suggest substantial room for improvement. Data and code available at: https://princeton-pli.github.io/LongProc


CodeUpdateArena: Benchmarking Knowledge Editing on API Updates

arXiv.org Artificial Intelligence

Large language models (LLMs) are increasingly being used to synthesize and reason about source code. However, the static nature of these models' knowledge does not reflect the fact that libraries and API functions they invoke are continuously evolving, with functionality being added or changing. While numerous benchmarks evaluate how LLMs can generate code, no prior work has studied how an LLMs' knowledge about code API functions can be updated. To fill this gap, we present CodeUpdateArena, a benchmark for knowledge editing in the code domain. An instance in our benchmark consists of a synthetic API function update paired with a program synthesis example that uses the updated functionality; our goal is to update an LLM to be able to solve this program synthesis example without providing documentation of the update at inference time. Compared to knowledge editing for facts encoded in text, success here is more challenging: a code LLM must correctly reason about the semantics of the modified function rather than just reproduce its syntax. Our dataset is constructed by first prompting GPT-4 to generate atomic and executable function updates. Then, for each update, we generate program synthesis examples whose code solutions are prone to use the update. Our benchmark covers updates of various types to 54 functions from seven diverse Python packages, with a total of 670 program synthesis examples. Our experiments show that prepending documentation of the update to open-source code LLMs (i.e., DeepSeek, CodeLlama) does not allow them to incorporate changes for problem solving, and existing knowledge editing techniques also have substantial room for improvement. We hope our benchmark will inspire new methods for knowledge updating in code LLMs.


LoFiT: Localized Fine-tuning on LLM Representations

arXiv.org Artificial Intelligence

Recent work in interpretability shows that large language models (LLMs) can be adapted for new tasks in a learning-free way: it is possible to intervene on LLM representations to elicit desired behaviors for alignment. For instance, adding certain bias vectors to the outputs of certain attention heads is reported to boost the truthfulness of models. In this work, we show that localized fine-tuning serves as an effective alternative to such representation intervention methods. We introduce a framework called Localized Fine-Tuning on LLM Representations (LoFiT), which identifies a subset of attention heads that are most important for learning a specific task, then trains offset vectors to add to the model's hidden representations at those selected heads. LoFiT localizes to a sparse set of heads (3%) and learns the offset vectors from limited training data, comparable to the settings used for representation intervention. For truthfulness and reasoning tasks, we find that LoFiT's intervention vectors are more effective for LLM adaptation than vectors from representation intervention methods such as Inference-time Intervention. We also find that the localization step is important: selecting a task-specific set of attention heads can lead to higher performance than intervening on heads selected for a different task. Finally, for the tasks we study, LoFiT achieves comparable performance to other parameter-efficient fine-tuning methods such as LoRA, despite modifying 20x-200x fewer parameters than these methods.


Unveiling the Impact of Coding Data Instruction Fine-Tuning on Large Language Models Reasoning

arXiv.org Artificial Intelligence

Instruction Fine-Tuning (IFT) significantly enhances the zero-shot capabilities of pretrained Large Language Models (LLMs). While coding data is known to boost reasoning abilities during LLM pretraining, its role in activating internal reasoning capacities during IFT remains understudied. This paper investigates a key question: How does coding data impact LLMs' reasoning capacities during the IFT stage? To explore this, we thoroughly examine the impact of coding data across different coding data proportions, model families, sizes, and reasoning domains, from various perspectives. Specifically, we create three IFT datasets with increasing coding data proportions, fine-tune six LLM backbones across different families and scales on these datasets, evaluate the tuned models' performance across twelve tasks in three reasoning domains, and analyze the outcomes from three broad-to-granular perspectives: overall, domain-level, and task-specific. Our holistic analysis provides valuable insights in each perspective. First, coding data tuning enhances the overall reasoning capabilities of LLMs across different model families and scales. Moreover, the effect of coding data varies among different domains but shows consistent trends across model families and scales within each domain. Additionally, coding data generally yields comparable task-specific benefits across different model families, with the optimal coding data proportions in IFT datasets being task-specific.


AmbigDocs: Reasoning across Documents on Different Entities under the Same Name

arXiv.org Artificial Intelligence

Different entities with the same name can be difficult to distinguish. Handling confusing entity mentions is a crucial skill for language models (LMs). For example, given the question "Where was Michael Jordan educated?" and a set of documents discussing different people named Michael Jordan, can LMs distinguish entity mentions to generate a cohesive answer to the question? To test this ability, we introduce a new benchmark, AmbigDocs. By leveraging Wikipedia's disambiguation pages, we identify a set of documents, belonging to different entities who share an ambiguous name. From these documents, we generate questions containing an ambiguous name and their corresponding sets of answers. Our analysis reveals that current state-of-the-art models often yield ambiguous answers or incorrectly merge information belonging to different entities. We establish an ontology categorizing four types of incomplete answers and automatic evaluation metrics to identify such categories. We lay the foundation for future work on reasoning across multiple documents with ambiguous entities.


Crafting In-context Examples according to LMs' Parametric Knowledge

arXiv.org Artificial Intelligence

In-context learning has been applied to knowledge-rich tasks such as question answering. In such scenarios, in-context examples are used to trigger a behaviour in the language model: namely, it should surface information stored in its parametric knowledge. We study the construction of in-context example sets, with a focus on the parametric knowledge of the model regarding in-context examples. We identify 'known' examples, where models can correctly answer from its parametric knowledge, and 'unknown' ones. Our experiments show that prompting with 'unknown' examples decreases the performance, potentially as it encourages hallucination rather than searching its parametric knowledge. Constructing an in-context example set that presents both known and unknown information performs the best across diverse settings. We perform analysis on three multi-answer question answering datasets, which allows us to further study answer set ordering strategies based on the LM's knowledge about each answer. Together, our study sheds lights on how to best construct in-context example sets for knowledge-rich tasks.


Effective Large Language Model Adaptation for Improved Grounding

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved remarkable advancements in natural language understanding, generation, and manipulation of text-based data. However, one major issue towards their widespread deployment in the real world is that they can generate "hallucinated" answers that are not factual. Towards this end, this paper focuses on improving grounding from a holistic perspective with a novel framework, AGREE, Adaptation of LLMs for GRounding EnhancEment. We start with the design of an iterative test-time adaptation (TTA) capability that takes into account the support information generated in self-grounded responses. To effectively enable this capability, we tune LLMs to ground the claims in their responses to retrieved documents by providing citations. This tuning on top of the pre-trained LLMs requires a small amount of data that needs to be constructed in a particular way to learn the grounding information, for which we introduce a data construction method. Our results show that the tuning-based AGREE framework generates better grounded responses with more accurate citations compared to prompting-based approaches.


MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning

arXiv.org Artificial Intelligence

While large language models (LLMs) equipped with techniques like chain-of-thought prompting have demonstrated impressive capabilities, they still fall short in their ability to reason robustly in complex settings. However, evaluating LLM reasoning is challenging because system capabilities continue to grow while benchmark datasets for tasks like logical deduction have remained static. We introduce MuSR, a dataset for evaluating language models on multistep soft reasoning tasks specified in a natural language narrative. This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm, enabling the construction of complex reasoning instances that challenge GPT-4 (e.g., murder mysteries roughly 1000 words in length) and which can be scaled further as more capable LLMs are released. Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning; this makes it simultaneously much more challenging than other synthetically-crafted benchmarks while remaining realistic and tractable for human annotators to solve with high accuracy. We evaluate a range of LLMs and prompting techniques on this dataset and characterize the gaps that remain for techniques like chain-of-thought to perform robust reasoning.


Explanation Selection Using Unlabeled Data for Chain-of-Thought Prompting

arXiv.org Artificial Intelligence

Recent work has shown how to prompt large language models with explanations to obtain strong performance on textual reasoning tasks, i.e., the chain-of-thought paradigm. However, subtly different explanations can yield widely varying downstream task accuracy. Explanations that have not been "tuned" for a task, such as off-the-shelf explanations written by nonexperts, may lead to mediocre performance. This paper tackles the problem of how to optimize explanation-infused prompts in a blackbox fashion. We first generate sets of candidate explanations for each example in the prompt using a leave-one-out scheme, then find an effective combination of these explanations with a two-stage framework. We first evaluate explanations for each in-context example in isolation according to two proxy metrics, log likelihood and accuracy on new examples. Then, we search over combinations of explanations to find one that yields high performance against a silver-labeled development set. Across four textual reasoning tasks spanning question answering, mathematical reasoning, and natural language inference, results show that our proxy metrics correlate with ground truth accuracy and our overall method can effectively improve prompts over crowdworker annotations and naive search strategies