Goto

Collaborating Authors

 Ye, Qingqing


AdvSGM: Differentially Private Graph Learning via Adversarial Skip-gram Model

arXiv.org Artificial Intelligence

--The skip-gram model (SGM), which employs a neural network to generate node vectors, serves as the basis for numerous popular graph embedding techniques. However, since the training datasets contain sensitive linkage information, the parameters of a released SGM may encode private information and pose significant privacy risks. Differential privacy (DP) is a rigorous standard for protecting individual privacy in data analysis. Nevertheless, when applying differential privacy to skip-gram in graphs, it becomes highly challenging due to the complex link relationships, which potentially result in high sensitivity and necessitate substantial noise injection. T o tackle this challenge, we present AdvSGM, a differentially private skip-gram for graphs via adversarial training. Our core idea is to leverage adversarial training to privatize skip-gram while improving its utility. T owards this end, we develop a novel adversarial training module by devising two optimizable noise terms that correspond to the parameters of a skip-gram. By fine-tuning the weights between modules within AdvSGM, we can achieve differentially private gradient updates without additional noise injection. Extensive experimental results on six real-world graph datasets show that AdvSGM preserves high data utility across different downstream tasks. Graph embedding, which has attracted increasing research attention, represents nodes by low-dimensional vectors while preserving the inherent properties and structures of the graph. In this way, well-studied machine learning algorithms can be easily applied for further mining tasks like clustering, classification, and prediction. Skip-gram models (SGMs) are a popular class of graph embedding models thanks to their simplicity and effectiveness, including DeepWalk [1], LINE [2], and node2vec [3]. However, SGMs, which capture not only general data characteristics but also specific details about individual data, are vulnerable to adversarial attacks, particularly user-linkage attacks [4] that exploit the linkage information between nodes to infer whether an individual is present in the training dataset. Therefore, node embeddings need to be sanitized with privacy guarantees before they can be released to the public. Differential privacy (DP) [5] is a well studied statistical privacy model recognized for its rigorous mathematical underpinnings. In this paper, we study the problem of achieving privacy-preserving skip-gram for graphs under differential privacy.


A Sample-Level Evaluation and Generative Framework for Model Inversion Attacks

arXiv.org Artificial Intelligence

Model Inversion (MI) attacks, which reconstruct the training dataset of neural networks, pose significant privacy concerns in machine learning. Recent MI attacks have managed to reconstruct realistic label-level private data, such as the general appearance of a target person from all training images labeled on him. Beyond label-level privacy, in this paper we show sample-level privacy, the private information of a single target sample, is also important but under-explored in the MI literature due to the limitations of existing evaluation metrics. To address this gap, this study introduces a novel metric tailored for training-sample analysis, namely, the Diversity and Distance Composite Score (DDCS), which evaluates the reconstruction fidelity of each training sample by encompassing various MI attack attributes. This, in turn, enhances the precision of sample-level privacy assessments. Leveraging DDCS as a new evaluative lens, we observe that many training samples remain resilient against even the most advanced MI attack. As such, we further propose a transfer learning framework that augments the generative capabilities of MI attackers through the integration of entropy loss and natural gradient descent. Extensive experiments verify the effectiveness of our framework on improving state-of-the-art MI attacks over various metrics including DDCS, coverage and FID. Finally, we demonstrate that DDCS can also be useful for MI defense, by identifying samples susceptible to MI attacks in an unsupervised manner.


FUNU: Boosting Machine Unlearning Efficiency by Filtering Unnecessary Unlearning

arXiv.org Artificial Intelligence

Machine unlearning is an emerging field that selectively removes specific data samples from a trained model. This capability is crucial for addressing privacy concerns, complying with data protection regulations, and correcting errors or biases introduced by certain data. Unlike traditional machine learning, where models are typically static once trained, machine unlearning facilitates dynamic updates that enable the model to ``forget'' information without requiring complete retraining from scratch. There are various machine unlearning methods, some of which are more time-efficient when data removal requests are fewer. To decrease the execution time of such machine unlearning methods, we aim to reduce the size of data removal requests based on the fundamental assumption that the removal of certain data would not result in a distinguishable retrained model. We first propose the concept of unnecessary unlearning, which indicates that the model would not alter noticeably after removing some data points. Subsequently, we review existing solutions that can be used to solve our problem. We highlight their limitations in adaptability to different unlearning scenarios and their reliance on manually selected parameters. We consequently put forward FUNU, a method to identify data points that lead to unnecessary unlearning. FUNU circumvents the limitations of existing solutions. The idea is to discover data points within the removal requests that have similar neighbors in the remaining dataset. We utilize a reference model to set parameters for finding neighbors, inspired from the area of model memorization. We provide a theoretical analysis of the privacy guarantee offered by FUNU and conduct extensive experiments to validate its efficacy.


Fine-tuning is Not Fine: Mitigating Backdoor Attacks in GNNs with Limited Clean Data

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have achieved remarkable performance through their message-passing mechanism. However, recent studies have highlighted the vulnerability of GNNs to backdoor attacks, which can lead the model to misclassify graphs with attached triggers as the target class. The effectiveness of recent promising defense techniques, such as fine-tuning or distillation, is heavily contingent on having comprehensive knowledge of the sufficient training dataset. Empirical studies have shown that fine-tuning methods require a clean dataset of 20% to reduce attack accuracy to below 25%, while distillation methods require a clean dataset of 15%. However, obtaining such a large amount of clean data is commonly impractical. In this paper, we propose a practical backdoor mitigation framework, denoted as GRAPHNAD, which can capture high-quality intermediate-layer representations in GNNs to enhance the distillation process with limited clean data. To achieve this, we address the following key questions: How to identify the appropriate attention representations in graphs for distillation? How to enhance distillation with limited data? By adopting the graph attention transfer method, GRAPHNAD can effectively align the intermediate-layer attention representations of the backdoored model with that of the teacher model, forcing the backdoor neurons to transform into benign ones. Besides, we extract the relation maps from intermediate-layer transformation and enforce the relation maps of the backdoored model to be consistent with that of the teacher model, thereby ensuring model accuracy while further reducing the influence of backdoors. Extensive experimental results show that by fine-tuning a teacher model with only 3% of the clean data, GRAPHNAD can reduce the attack success rate to below 5%.


Structure-Preference Enabled Graph Embedding Generation under Differential Privacy

arXiv.org Machine Learning

Graph embedding generation techniques aim to learn low-dimensional vectors for each node in a graph and have recently gained increasing research attention. Publishing low-dimensional node vectors enables various graph analysis tasks, such as structural equivalence and link prediction. Yet, improper publication opens a backdoor to malicious attackers, who can infer sensitive information of individuals from the low-dimensional node vectors. Existing methods tackle this issue by developing deep graph learning models with differential privacy (DP). However, they often suffer from large noise injections and cannot provide structural preferences consistent with mining objectives. Recently, skip-gram based graph embedding generation techniques are widely used due to their ability to extract customizable structures. Based on skip-gram, we present SE-PrivGEmb, a structure-preference enabled graph embedding generation under DP. For arbitrary structure preferences, we design a unified noise tolerance mechanism via perturbing non-zero vectors. This mechanism mitigates utility degradation caused by high sensitivity. By carefully designing negative sampling probabilities in skip-gram, we theoretically demonstrate that skip-gram can preserve arbitrary proximities, which quantify structural features in graphs. Extensive experiments show that our method outperforms existing state-of-the-art methods under structural equivalence and link prediction tasks.


New Paradigm of Adversarial Training: Breaking Inherent Trade-Off between Accuracy and Robustness via Dummy Classes

arXiv.org Artificial Intelligence

Adversarial Training (AT) is one of the most effective methods to enhance the robustness of DNNs. However, existing AT methods suffer from an inherent trade-off between adversarial robustness and clean accuracy, which seriously hinders their real-world deployment. While this problem has been widely studied within the current AT paradigm, existing AT methods still typically experience a reduction in clean accuracy by over 10% to date, without significant improvements in robustness compared with simple baselines like PGD-AT. This inherent trade-off raises a question: whether the current AT paradigm, which assumes to learn the corresponding benign and adversarial samples as the same class, inappropriately combines clean and robust objectives that may be essentially inconsistent. In this work, we surprisingly reveal that up to 40% of CIFAR-10 adversarial samples always fail to satisfy such an assumption across various AT methods and robust models, explicitly indicating the improvement room for the current AT paradigm. Accordingly, to relax the tension between clean and robust learning derived from this overstrict assumption, we propose a new AT paradigm by introducing an additional dummy class for each original class, aiming to accommodate the hard adversarial samples with shifted distribution after perturbation. The robustness w.r.t. these adversarial samples can be achieved by runtime recovery from the predicted dummy classes to their corresponding original ones, eliminating the compromise with clean learning. Building on this new paradigm, we propose a novel plug-and-play AT technology named DUmmy Classes-based Adversarial Training (DUCAT). Extensive experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that the DUCAT concurrently improves clean accuracy and adversarial robustness compared with state-of-the-art benchmarks, effectively breaking the existing inherent trade-off.


DPSUR: Accelerating Differentially Private Stochastic Gradient Descent Using Selective Update and Release

arXiv.org Artificial Intelligence

Machine learning models are known to memorize private data to reduce their training loss, which can be inadvertently exploited by privacy attacks such as model inversion and membership inference. To protect against these attacks, differential privacy (DP) has become the de facto standard for privacy-preserving machine learning, particularly those popular training algorithms using stochastic gradient descent, such as DPSGD. Nonetheless, DPSGD still suffers from severe utility loss due to its slow convergence. This is partially caused by the random sampling, which brings bias and variance to the gradient, and partially by the Gaussian noise, which leads to fluctuation of gradient updates. Our key idea to address these issues is to apply selective updates to the model training, while discarding those useless or even harmful updates. Motivated by this, this paper proposes DPSUR, a Differentially Private training framework based on Selective Updates and Release, where the gradient from each iteration is evaluated based on a validation test, and only those updates leading to convergence are applied to the model. As such, DPSUR ensures the training in the right direction and thus can achieve faster convergence than DPSGD. The main challenges lie in two aspects -- privacy concerns arising from gradient evaluation, and gradient selection strategy for model update. To address the challenges, DPSUR introduces a clipping strategy for update randomization and a threshold mechanism for gradient selection. Experiments conducted on MNIST, FMNIST, CIFAR-10, and IMDB datasets show that DPSUR significantly outperforms previous works in terms of convergence speed and model utility.