Ye, Mengbin
Coevolutionary Dynamics of Actions and Opinions in Social Networks
Aghbolagh, Hassan Dehghani, Ye, Mengbin, Zino, Lorenzo, Cao, Ming, Chen, Zhiyong
Empirical studies suggest a deep intertwining between opinion formation and decision-making processes, but these have been treated as separate problems in the study of dynamical models for social networks. In this paper, we bridge the gap in the literature by proposing a novel coevolutionary model, in which each individual selects an action from a binary set and has an opinion on which action they prefer. Actions and opinions coevolve on a two-layer network. For homogeneous parameters, undirected networks, and under reasonable assumptions on the asynchronous updating mechanics, we prove that the coevolutionary dynamics is an ordinal potential game, enabling analysis via potential game theory. Specifically, we establish global convergence to the Nash equilibria of the game, proving that actions converge in a finite number of time steps, while opinions converge asymptotically. Next, we provide sufficient conditions for the existence of, and convergence to, polarized equilibria, whereby the population splits into two communities, each selecting and supporting one of the actions. Finally, we use simulations to examine the social psychological phenomenon of pluralistic ignorance.
An Influence Network Model to Study Discrepancies in Expressed and Private Opinions
Ye, Mengbin, Qin, Yuzhen, Govaert, Alain, Anderson, Brian D. O., Cao, Ming
In many social situations, a discrepancy arises between an individual's private and expressed opinions on a given topic. Motivated by Solomon Asch's seminal experiments on social conformity and other related socio-psychological works, we propose a novel opinion dynamics model to study how such a discrepancy can arise in general social networks of interpersonal influence. Each individual in the network has both a private and an expressed opinion: an individual's private opinion evolves under social influence from the expressed opinions of the individual's neighbours, while the individual determines his or her expressed opinion under a pressure to conform to the average expressed opinion of his or her neighbours, termed the local public opinion. General conditions on the network that guarantee exponentially fast convergence of the opinions to a limit are obtained. Further analysis of the limit yields several semi-quantitative conclusions, which have insightful social interpretations, including the establishing of conditions that ensure every individual in the network has such a discrepancy. Last, we show the generality and validity of the model by using it to explain and predict the results of Solomon Asch's seminal experiments.
Consensus and Disagreement of Heterogeneous Belief Systems in Influence Networks
Ye, Mengbin, Liu, Ji, Wang, Lili, Anderson, Brian D. O., Cao, Ming
Recently, an opinion dynamics model has been proposed to describe a network of individuals discussing a set of logically interdependent topics. For each individual, the set of topics and the logical interdependencies between the topics (captured by a logic matrix) form a belief system. We investigate the role the logic matrix and its structure plays in determining the final opinions, including existence of the limiting opinions, of a strongly connected network of individuals. We provide a set of results that, given a set of individuals' belief systems, allow a systematic determination of which topics will reach a consensus, and which topics will disagreement in arise. For irreducible logic matrices, each topic reaches a consensus. For reducible logic matrices, which indicates a cascade interdependence relationship, conditions are given on whether a topic will reach a consensus or not. It turns out that heterogeneity among the individuals' logic matrices, including especially differences in the signs of the off-diagonal entries, can be a key determining factor. This paper thus attributes, for the first time, a strong diversity of limiting opinions to heterogeneity of belief systems in influence networks, in addition to the more typical explanation that strong diversity arises from individual stubbornness.
Cooperative Localisation of a GPS-Denied UAV using Direction of Arrival Measurements
Russell, James S., Ye, Mengbin, Anderson, Brian D. O., Hmam, Hatem, Sarunic, Peter
A GPS-denied UAV (Agent B) is localised through INS alignment with the aid of a nearby GPS-equipped UAV (Agent A), which broadcasts its position at several time instants. Agent B measures the signals' direction of arrival with respect to Agent B's inertial navigation frame. Semidefinite programming and the Orthogonal Procrustes algorithm are employed, and accuracy is improved through maximum likelihood estimation. The method is validated using flight data and simulations. A three-agent extension is explored.
Discrete-Time Polar Opinion Dynamics with Susceptibility
Liu, Ji, Ye, Mengbin, Anderson, Brian D. O., Başar, Tamer, Nedić, Angelia
This paper considers a discrete-time opinion dynamics model in which each individual's susceptibility to being influenced by others is dependent on her current opinion. We assume that the social network has time-varying topology and that the opinions are scalars on a continuous interval. We first propose a general opinion dynamics model based on the DeGroot model, with a general function to describe the functional dependence of each individual's susceptibility on her own opinion, and show that this general model is analogous to the Friedkin-Johnsen model, which assumes a constant susceptibility for each individual. We then consider two specific functions in which the individual's susceptibility depends on the \emph{polarity} of her opinion, and provide motivating social examples. First, we consider stubborn positives, who have reduced susceptibility if their opinions are at one end of the interval and increased susceptibility if their opinions are at the opposite end. A court jury is used as a motivating example. Second, we consider stubborn neutrals, who have reduced susceptibility when their opinions are in the middle of the spectrum, and our motivating examples are social networks discussing established social norms or institutionalized behavior. For each specific susceptibility model, we establish the initial and graph topology conditions in which consensus is reached, and develop necessary and sufficient conditions on the initial conditions for the final consensus value to be at either extreme of the opinion interval. Simulations are provided to show the effects of the susceptibility function when compared to the DeGroot model.
Evolution of Social Power in Social Networks with Dynamic Topology
Ye, Mengbin, Liu, Ji, Anderson, Brian D. O., Yu, Changbin, Başar, Tamer
The recently proposed DeGroot-Friedkin model describes the dynamical evolution of individual social power in a social network that holds opinion discussions on a sequence of different issues. This paper revisits that model, and uses nonlinear contraction analysis, among other tools, to establish several novel results. First, we show that for a social network with constant topology, each individual's social power converges to its equilibrium value exponentially fast, whereas previous results only concluded asymptotic convergence. Second, when the network topology is dynamic (i.e., the relative interaction matrix may change between any two successive issues), we show that each individual exponentially forgets its initial social power. Specifically, individual social power is dependent only on the dynamic network topology, and initial (or perceived) social power is forgotten as a result of sequential opinion discussion. Last, we provide an explicit upper bound on an individual's social power as the number of issues discussed tends to infinity; this bound depends only on the network topology. Simulations are provided to illustrate our results.
Event-Triggered Algorithms for Leader-Follower Consensus of Networked Euler-Lagrange Agents
Liu, Qingchen, Ye, Mengbin, Qin, Jiahu, Yu, Changbin
This paper proposes three different distributed event-triggered control algorithms to achieve leader-follower consensus for a network of Euler-Lagrange agents. We firstly propose two model-independent algorithms for a subclass of Euler-Lagrange agents without the vector of gravitational potential forces. By model-independent, we mean that each agent can execute its algorithm with no knowledge of the agent self-dynamics. A variable-gain algorithm is employed when the sensing graph is undirected; algorithm parameters are selected in a fully distributed manner with much greater flexibility compared to all previous work concerning event-triggered consensus problems. When the sensing graph is directed, a constant-gain algorithm is employed. The control gains must be centrally designed to exceed several lower bounding inequalities which require limited knowledge of bounds on the matrices describing the agent dynamics, bounds on network topology information and bounds on the initial conditions. When the Euler-Lagrange agents have dynamics which include the vector of gravitational potential forces, an adaptive algorithm is proposed which requires more information about the agent dynamics but can estimate uncertain agent parameters. For each algorithm, a trigger function is proposed to govern the event update times. At each event, the controller is updated, which ensures that the control input is piecewise constant and saves energy resources. We analyse each controllers and trigger function and exclude Zeno behaviour. Extensive simulations show 1) the advantages of our proposed trigger function as compared to those in existing literature, and 2) the effectiveness of our proposed controllers.
Cooperative Localisation of a GPS-Denied UAV in 3-Dimensional Space Using Direction of Arrival Measurements
Russell, James, Ye, Mengbin, Anderson, Brian D. O., Hmam, Hatem, Sarunic, Peter
This paper presents a novel approach for localising a GPS (Global Positioning System)-denied Unmanned Aerial Vehicle (UAV) with the aid of a GPS-equipped UAV in three-dimensional space. The GPS-equipped UAV makes discrete-time broadcasts of its global coordinates. The GPS-denied UAV simultaneously receives the broadcast and takes direction of arrival (DOA) measurements towards the origin of the broadcast in its local coordinate frame (obtained via an inertial navigation system (INS)). The aim is to determine the difference between the local and global frames, described by a rotation and a translation. In the noiseless case, global coordinates were recovered exactly by solving a system of linear equations. When DOA measurements are contaminated with noise, rank relaxed semidefinite programming (SDP) and the Orthogonal Procrustes algorithm are employed. Simulations are provided and factors affecting accuracy, such as noise levels and number of measurements, are explored.
On the Analysis of the DeGroot-Friedkin Model with Dynamic Relative Interaction Matrices
Ye, Mengbin, Liu, Ji, Anderson, Brian David Outram, Yu, Changbin, Başar, Tamer
This paper analyses the DeGroot-Friedkin model for evolution of the individuals' social powers in a social network when the network topology varies dynamically (described by dynamic relative interaction matrices). The DeGroot-Friedkin model describes how individual social power (self-appraisal, self-weight) evolves as a network of individuals discuss a sequence of issues. We seek to study dynamically changing relative interactions because interactions may change depending on the issue being discussed. In order to explore the problem in detail, two different cases of issue-dependent network topologies are studied. First, if the topology varies between issues in a periodic manner, it is shown that the individuals' self-appraisals admit a periodic solution. Second, if the topology changes arbitrarily, under the assumption that each relative interaction matrix is doubly stochastic and irreducible, the individuals' self-appraisals asymptotically converge to a unique non-trivial equilibrium.