Goto

Collaborating Authors

 Ye, Mao


Generative Data Mining with Longtail-Guided Diffusion

arXiv.org Artificial Intelligence

It is difficult to anticipate the myriad challenges that a predictive model will encounter once deployed. Common practice entails a reactive, cyclical approach: model deployment, data mining, and retraining. We instead develop a proactive longtail discovery process by imagining additional data during training. In particular, we develop general model-based longtail signals, including a differentiable, single forward pass formulation of epistemic uncertainty that does not impact model parameters or predictive performance but can flag rare or hard inputs. We leverage these signals as guidance to generate additional training data from a latent diffusion model in a process we call Longtail Guidance (LTG). Crucially, we can perform LTG without retraining the diffusion model or the predictive model, and we do not need to expose the predictive model to intermediate diffusion states. Data generated by LTG exhibit semantically meaningful variation, yield significant generalization improvements on image classification benchmarks, and can be analyzed to proactively discover, explain, and address conceptual gaps in a predictive model.


Fine-Grained Gradient Restriction: A Simple Approach for Mitigating Catastrophic Forgetting

arXiv.org Artificial Intelligence

A fundamental challenge in continual learning is to balance the trade-off between learning new tasks and remembering the previously acquired knowledge. Gradient Episodic Memory (GEM) achieves this balance by utilizing a subset of past training samples to restrict the update direction of the model parameters. In this work, we start by analyzing an often overlooked hyper-parameter in GEM, the memory strength, which boosts the empirical performance by further constraining the update direction. We show that memory strength is effective mainly because it improves GEM's generalization ability and therefore leads to a more favorable trade-off. By this finding, we propose two approaches that more flexibly constrain the update direction. Our methods are able to achieve uniformly better Pareto Frontiers of remembering old and learning new knowledge than using memory strength. We further propose a computationally efficient method to approximately solve the optimization problem with more constraints.


VLMine: Long-Tail Data Mining with Vision Language Models

arXiv.org Artificial Intelligence

Ensuring robust performance on long-tail examples is an important problem for many real-world applications of machine learning, such as autonomous driving. This work focuses on the problem of identifying rare examples within a corpus of unlabeled data. We propose a simple and scalable data mining approach that leverages the knowledge contained within a large vision language model (VLM). Our approach utilizes a VLM to summarize the content of an image into a set of keywords, and we identify rare examples based on keyword frequency. We find that the VLM offers a distinct signal for identifying long-tail examples when compared to conventional methods based on model uncertainty. Therefore, we propose a simple and general approach for integrating signals from multiple mining algorithms. We evaluate the proposed method on two diverse tasks: 2D image classification, in which inter-class variation is the primary source of data diversity, and on 3D object detection, where intra-class variation is the main concern. Furthermore, through the detection task, we demonstrate that the knowledge extracted from 2D images is transferable to the 3D domain. Our experiments consistently show large improvements (between 10\% and 50\%) over the baseline techniques on several representative benchmarks: ImageNet-LT, Places-LT, and the Waymo Open Dataset.


Few-Shot Medical Image Segmentation with High-Fidelity Prototypes

arXiv.org Artificial Intelligence

Few-shot Semantic Segmentation (FSS) aims to adapt a pretrained model to new classes with as few as a single labelled training sample per class. Despite the prototype based approaches have achieved substantial success, existing models are limited to the imaging scenarios with considerably distinct objects and not highly complex background, e.g., natural images. This makes such models suboptimal for medical imaging with both conditions invalid. To address this problem, we propose a novel Detail Self-refined Prototype Network (DSPNet) to constructing high-fidelity prototypes representing the object foreground and the background more comprehensively. Specifically, to construct global semantics while maintaining the captured detail semantics, we learn the foreground prototypes by modelling the multi-modal structures with clustering and then fusing each in a channel-wise manner. Considering that the background often has no apparent semantic relation in the spatial dimensions, we integrate channel-specific structural information under sparse channel-aware regulation. Extensive experiments on three challenging medical image benchmarks show the superiority of DSPNet over previous state-of-the-art methods.


Triple-domain Feature Learning with Frequency-aware Memory Enhancement for Moving Infrared Small Target Detection

arXiv.org Artificial Intelligence

Moving infrared small target detection presents significant challenges due to tiny target sizes and low contrast against backgrounds. Currently-existing methods primarily focus on extracting target features only from the spatial-temporal domain. For further enhancing feature representation, more information domains such as frequency are believed to be potentially valuable. To extend target feature learning, we propose a new Triple-domain Strategy (Tridos) with the frequency-aware memory enhancement on the spatial-temporal domain. In our scheme, it effectively detaches and enhances frequency features by a local-global frequency-aware module with Fourier transform. Inspired by the human visual system, our memory enhancement aims to capture the target spatial relations between video frames. Furthermore, it encodes temporal dynamics motion features via differential learning and residual enhancing. Additionally, we further design a residual compensation unit to reconcile possible cross-domain feature mismatches. To our best knowledge, our Tridos is the first work to explore target feature learning comprehensively in spatial-temporal-frequency domains. The extensive experiments on three datasets (DAUB, ITSDT-15K, and IRDST) validate that our triple-domain learning scheme could be obviously superior to state-of-the-art ones. Source codes are available at https://github.com/UESTC-nnLab/Tridos.


MSMix:An Interpolation-Based Text Data Augmentation Method Manifold Swap Mixup

arXiv.org Artificial Intelligence

To solve the problem of poor performance of deep neural network models due to insufficient data, a simple yet effective interpolation-based data augmentation method is proposed: MSMix (Manifold Swap Mixup). This method feeds two different samples to the same deep neural network model, and then randomly select a specific layer and partially replace hidden features at that layer of one of the samples by the counterpart of the other. The mixed hidden features are fed to the model and go through the rest of the network. Two different selection strategies are also proposed to obtain richer hidden representation. Experiments are conducted on three Chinese intention recognition datasets, and the results show that the MSMix method achieves better results than other methods in both full-sample and small-sample configurations.


Centroid Approximation for Bootstrap

arXiv.org Machine Learning

Bootstrap is a principled and powerful frequentist statistical tool for uncertainty quantification. Unfortunately, standard bootstrap methods are computationally intensive due to the need of drawing a large i.i.d. bootstrap sample to approximate the ideal bootstrap distribution; this largely hinders their application in large-scale machine learning, especially deep learning problems. In this work, we propose an efficient method to explicitly \emph{optimize} a small set of high quality "centroid" points to better approximate the ideal bootstrap distribution. We achieve this by minimizing a simple objective function that is asymptotically equivalent to the Wasserstein distance to the ideal bootstrap distribution. This allows us to provide an accurate estimation of uncertainty with a small number of bootstrap centroids, outperforming the naive i.i.d. sampling approach. Empirically, we show that our method can boost the performance of bootstrap in a variety of applications.


Pareto Navigation Gradient Descent: a First-Order Algorithm for Optimization in Pareto Set

arXiv.org Artificial Intelligence

Many modern machine learning applications, such as multi-task learning, require finding optimal model parameters to trade-off multiple objective functions that may conflict with each other. The notion of the Pareto set allows us to focus on the set of (often infinite number of) models that cannot be strictly improved. But it does not provide an actionable procedure for picking one or a few special models to return to practical users. In this paper, we consider \emph{optimization in Pareto set (OPT-in-Pareto)}, the problem of finding Pareto models that optimize an extra reference criterion function within the Pareto set. This function can either encode a specific preference from the users, or represent a generic diversity measure for obtaining a set of diversified Pareto models that are representative of the whole Pareto set. Unfortunately, despite being a highly useful framework, efficient algorithms for OPT-in-Pareto have been largely missing, especially for large-scale, non-convex, and non-linear objectives in deep learning. A naive approach is to apply Riemannian manifold gradient descent on the Pareto set, which yields a high computational cost due to the need for eigen-calculation of Hessian matrices. We propose a first-order algorithm that approximately solves OPT-in-Pareto using only gradient information, with both high practical efficiency and theoretically guaranteed convergence property. Empirically, we demonstrate that our method works efficiently for a variety of challenging multi-task-related problems.


VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments

arXiv.org Machine Learning

Motivated by the rising abundance of observational data with continuous treatments, we investigate the problem of estimating the average dose-response curve (ADRF). Available parametric methods are limited in their model space, and previous attempts in leveraging neural network to enhance model expressiveness relied on partitioning continuous treatment into blocks and using separate heads for each block; this however produces in practice discontinuous ADRFs. Therefore, the question of how to adapt the structure and training of neural network to estimate ADRFs remains open. This paper makes two important contributions. First, we propose a novel varying coefficient neural network (VCNet) that improves model expressiveness while preserving continuity of the estimated ADRF. Second, to improve finite sample performance, we generalize targeted regularization to obtain a doubly robust estimator of the whole ADRF curve. Continuous treatments arise in many fields, including healthcare, public policy, and economics. With the widespread accumulation of observational data, estimating the average dose-response function (ADRF) while correcting for confounders has become an important problem (Hirano & Imbens, 2004; Imai & Van Dyk, 2004; Kennedy et al., 2017; Fong et al., 2018). Recently, papers in causal inference (Johansson et al., 2016; Alaa & van der Schaar, 2017; Shalit et al., 2017; Schwab et al., 2019; Farrell et al., 2018; Shi et al., 2019) have utilized feed forward neural network for modeling.


Greedy Optimization Provably Wins the Lottery: Logarithmic Number of Winning Tickets is Enough

arXiv.org Machine Learning

Despite the great success of deep learning, recent works show that large deep neural networks are often highly redundant and can be significantly reduced in size. However, the theoretical question of how much we can prune a neural network given a specified tolerance of accuracy drop is still open. This paper provides one answer to this question by proposing a greedy optimization based pruning method. The proposed method has the guarantee that the discrepancy between the pruned network and the original network decays with exponentially fast rate w.r.t. the size of the pruned network, under weak assumptions that apply for most practical settings. Empirically, our method improves prior arts on pruning various network architectures including ResNet, MobilenetV2/V3 on ImageNet.