Goto

Collaborating Authors

 Yao, Yixiang


Privacy-Preserving Language Model Inference with Instance Obfuscation

arXiv.org Artificial Intelligence

Language Models as a Service (LMaaS) offers convenient access for developers and researchers to perform inference using pre-trained language models. Nonetheless, the input data and the inference results containing private information are exposed as plaintext during the service call, leading to privacy issues. Recent studies have started tackling the privacy issue by transforming input data into privacy-preserving representation from the user-end with the techniques such as noise addition and content perturbation, while the exploration of inference result protection, namely decision privacy, is still a blank page. In order to maintain the black-box manner of LMaaS, conducting data privacy protection, especially for the decision, is a challenging task because the process has to be seamless to the models and accompanied by limited communication and computation overhead. We thus propose Instance-Obfuscated Inference (IOI) method, which focuses on addressing the decision privacy issue of natural language understanding tasks in their complete life-cycle. Besides, we conduct comprehensive experiments to evaluate the performance as well as the privacy-protection strength of the proposed method on various benchmarking tasks.


KGTK: A Toolkit for Large Knowledge Graph Manipulation and Analysis

arXiv.org Artificial Intelligence

Knowledge graphs (KGs) have become the preferred technology for representing, sharing and adding knowledge to modern AI applications. While KGs have become a mainstream technology, the RDF/SPARQL-centric toolset for operating with them at scale is heterogeneous, difficult to integrate and only covers a subset of the operations that are commonly needed in data science applications. In this paper, we present KGTK, a data science-centric toolkit to represent, create, transform, enhance and analyze KGs. KGTK represents graphs in tables and leverages popular libraries developed for data science applications, enabling a wide audience of developers to easily construct knowledge graph pipelines for their applications. We illustrate KGTK with real-world scenarios in which we have used KGTK to integrate and manipulate large KGs, such as Wikidata, DBpedia and ConceptNet, in our own work.